g
1

CAD/CAM Theory and Practice

L'| Ly
; R ; -
f-} CI lll:'Il- - FJ C]
ti:\ !’.-3

(@) Same geometry but different topology

¥ £
R R
Lz CI ..P] Py
La
L =

{h) Same topology but different geometry
Fig. 6.2 Difference betwveen Geometry and Topology of an Objecy

For automation and integration purposes, solid models must be accurate, Althgy
accurate models are not a necessity during conceptual design, they are needed s
analysis and application algorithms that work off the solid model. Accuracy ﬂ:::;
speed of creation of a solid model depend directly on the representatiop scher
and consequently the data stored in the database of the model. The various gy m-lahle
schemes are discussed later in this chapter. Each of those schemes hag its ':!'w&
advantages and disadvantages, depending on the application. For example, B_TEH
modelers can better represent general shapes but usually require more proces sin
time. In contrast, CSG models are easier to build and better suited for dis[;.]aﬁ
purposes. However, it may be difficult to define a complex shape,

In constructing a solid model on a CAD/CAM system, the user should follow
the modeling guidelines discussed in Chap. 3. All the desi £n tools provideq h
these systems and covered in Part IV of the book, excluding the geometric modifiers
are applicable to solid models. Practically, it might be more convenient to COMStrug|
solid models in isometric views to enable clear display and visualization of the
solid as it is being constructed. It is also recommended that solid entities (primitives)
as well as intermediate solids be placed on different layers to allow convenient
reference to them during the construction process. A mesh similar to that used with
surface models can be added to B-rep-based solid models after they are created
However, solid models are beuer visualized via shading. Finally, it should be noted
that most user interfaces available to input solids have compatibility for CSG input,
Such compatibility does not reflect the internal core representation scheme

- implemented in a particular solid modeling package and users must consult with
the package developers if they wish to know that information.
 While solid models are complete and unambiguous, they are not unique. An
object may be constructed in various ways. Consider the solid shown in Fig. 6.3,
One can construct the solid model of the object shown by extending the horizontal
block to point A, add two blocks and subtract a cylinder as shown in Fig. 6.3b.

Tipes A
Ypes and Mathemar ical Representations of Solids E 323

Another alternative is shown in Fig. 6.3 w
lowed by the addit St
fﬂi- 3" Clnon. 'D'Lh-&:r I}l]ﬁhlh]‘h“ﬂﬁ E.?{i:-‘,t in..:;'[uding E-Hlt‘.l'ldiﬂg thE vertical

k to point B ins e
ﬂbil'gf:r ri.m;l:II |nel!1m:I";th3:adn:?rq ‘epeating the same two alternatives. Regardless of the
struction as well as the representation scheme utilized, the

resulting solid model of the object is always complete and unambiguous. However

there will always be a more efficient :
. : : way than others ; : ;
as in the case with wireframe and surface models eonsHuRt e solid niodels

@ =5

(@) Object (k) Possible solid model of the solid

<o)

(e} Alternative solid model of the object

Fig. 6.3 Nonuniqueness of Solid Model of an Object

here the subtraction is performed first

A

‘gﬁ

8

Users are now more aware of the potential benefits of solid models. Consequently
CAD/CAM vendors are investing more resources into developing solid modelin g.
However, most existing CAD/CAM systems offer solid modeling as packages that
are not linked to wireframe or surface capabilities offered by these systems. It is
expected, though, that the next generation of these systems will be based on solid
modeling if it matures and proves useful in the production environment.

o

A DI ERAITIES -5 e

Most commercially available solid modeling packages have a CSG-compatible
user input and therefore provide users with a certain set of building blocks, often
called primitives. Primitives are simple basic shapes and are considered the solid
modeling entities which can be combined by a mathematical set of boolean
operations to create the solid. Primitives thémselves are considered valid “off-the-
shelf” solids. In addition, some packages, especially those that support sweeping
operations, permit users to utilize wireframe entities to create faces that are swept
later to.create solids. The user usually positions primitives as required before
applying boolean operations to construct the final solid.

There is a wide variety of primitives available commercially to users. However,
the four most commonly used are the block, cylinder, cone and sphere. These are
based on the four natural quadrics: planes, cylinders, cones and spheres. For

324 E CAD/CAM Theory and Practice

example, the block is formed by intersecting six planes. These quady;
f:cmsidu:n:d natural because they represent the most commonly occurring :1-:.‘? ar
in mechanical design which can be produced by rolling, turning, milling : U”'E}EQH
drilling and other machining operations used in industry. Planar Euﬂ-m:";m[”? L
from rolling, chamfering and nulling; cylindrical surfaces from turning or ﬁ:'i]r{’..:,-ull
spherical surfaces from cutting with a ball-end cutting tool; conical surface -Eun S
turning as well as from drill tips and countersinks. Natural quadrics are distin :'_rlrﬁm
by the fact that they are combinations of linear motion and rotation. Other qfr;jhhed
except the torus, require at least dual axis control. T aces,
‘From a user-input point of view and regardless of a specific system syy,

[}rtl:ﬂlllivﬁ': requires a set of location data, a set of geometric data and l;d'v" 3
orientation data to define it completely. Location data entails a F'I‘imitivé Iet of
coordinate system and an input point denning its origin. Geometrical data dj ;cal
from one primitive to another and are user-input. Orientation data is typically y ot
to orient primitives properly relative to the MCS or WCS of the solid model ur.ifd
construction. Primitives are usually translated and/or rotated to position and U]-iEET
them properly before applying boolean operations. Following are descriptions nt
the most commonly used primitives (refer to Fig. 6.4): S of

1. Block "~ This is a box whose geometrical data is 11s width, height and depy;
Its local coordinate system X; ¥ Z; 18 shown in Fig. 6.4. Point P dEﬁn{:_gﬁ_hﬁl.
origin of the X; ¥, Z; system. The signs of W, H and D determine the position
of the block relative to its coordinate system. For example, a block with
negative value of Wis displayed as if the block shown in Fig. 6.4 is mirrored
about the ¥, Z; plane.

2. Cylinder This primitive is a right circular cylinder whose geomelry is

_ denned by its radius (or diameter)® and length H. The length H is usually
taken along the direction of the Z; axis. H can be positive or negative.

3. Cone Thisisarightcircularconeora frugtum of a right circular cone whose
base radius R, top radius (for truncated cone) and height H are user-defined.

4. Sphere Thisis defined by its radius or diameter and is centered about the
origin of its local coordinate system. ;

5. Wedge Thisisa right-angled wedge whose height H, width W and base
depth D form its geometric data.

6. Torus This primitive is generated by the revolution of a circle about an
axis lying in its plane (Z;, axis in Fig. 6.4). The torus geomelry can be defined
by the radius (or diameter) of its body K, and the radius (or diameter) of the
centerline of the torus body R,, or the geomeltry can be defined by the inner
radius (or diameter) R, and outer radins (or diameter) R,

For all the above primitives, there are default values for the data defining their
geometries. Most packages use default values of 1. In addition, the local coordinate
systems for the various primitives shown in Fig. 6.4 may change from one package 1o
another. Some packages assume that the origin, P, of the local coordinate system 15

coincident with that of the MCS or WCS and require the user o iranslate the primitive
e i Taati~n thus eliminating the input of point P by the user.

Types and Mathematical

1

Representations of Solids

Sphere

o =
L F_.'_

B B /

) F "-’---@—A},
™ g
R Ry

Torus

Fig. 6.4 Most Common Primitives :

- Wedge

Two or more primitives can be combined to form the desired solid. To ensure the
validity of the resulting solid, the allowed combinatorial relationships between
primitives are achieved via boolean (or set) operations. The available boolean operators
are union (W or +), intersection (M or I) and difference (—). The union operator is
used to combine or add together two objects or primitives. Intersecting two primitives
gives a shape equal to their common volume. The difference operator is used to
subtract one object from the other and results in a shape equal to the difference in
their volumes. Figure 6.5 shows boolean operations of a block A and a cylinder B. -

Example E 61 Create the solid model of the guide bracket shown in Fig. 4.2.

Solution The creation of the solid model of the guide bracket is much simpler than
its wireframe and surface models created in Examples 4.1 and 5.1 respectively. In
fact, combinations of blocks and cylinders are all that is needed to create the solid
model. While translational sweep can be used to create the solid model. it is not

discussed in this example and is left to the reader as an exercise. The following steps
may be followed 1o construct the solid model:

1. Follow the setup procedure discussed in Chap. 3.

2. To create the upper part of the object, create a block of size 2 % 1 » 0.25
and two cylinders of sizes R = 1.0, H=025and R = 0.5, H = 0.25. Create
another block of size 0.5 x 0.5 x 0.25 and rotate it 45° aboul the Z axis
(assuming the MCS shown in Fig. 4.2 is used here). These primitives are

Types and Matheinatical Representations o f Solids ‘= 335

existing ﬂﬂhﬂ%ripn]z;:;:ws ordrawings is largely unsolved. Mathematically, this
. g problem © ¢ & an edge representation into a solid representation This
P plem is not cﬂﬂ:p}:ﬁlg or well defined due to bwo reasons, First c}J ges a!‘cn::rve-:l
5|:r|id5 Fcur"-’sﬁd I‘*ﬂd}“ﬂ:-‘; r;{ nay not h‘f easily found from a f::milu number of
ijﬂi:u““s' econ l:: :"Eﬂ-ﬁ: mrF mf“ﬁﬂ_ﬁltlﬂn itself is ambiguous and can correspond
{0 MOTE than one o qu_‘ gorithms for dis-ambiguating wireframe models exist
ese algorithms find all possible objects that correspond to one drawing The

. nvert drawing ¢
i tHrmat 48 £5R Es 10 solid models stems fro e R
indusu-ial base of wireframe models. m the large existing

et T o R T 3 g gt -
%5 £ FUNDAMENTALS OF SOLID MODELING =
ﬁﬁ}rﬁm‘mﬁ“g !l‘lf.': details of the various representation schemes, it is 1
f} discuss the details of some of the underlying fundamentals c-;" sn!igliflgndilfi?;
theory. These arc geometry, topology, geometric closure, set theory, regularization
of set operations, set mﬂmbe!'ship classification and neighborhood. Geo metry and
logy have been covered in Sec. 6.2 and geometric closure is introduced in Sec.
, 6.4. This section COVELS S&l Lhc:nr},-', regularization, classification and neighborhood.
The significance -::ri: these ‘tnplgs to solid modeling stems from the definition of a
EDIId- mﬂdﬂ] asd Pﬂl“tlﬁﬂl 1 E- as given in Eq‘ (6.1 J. Thﬂ}.l' provide gﬂgd rEoTrous
maﬂ‘jt‘:lﬂaﬁﬂﬂ] foundations for devel Dpiﬂg and Hnal}.';;ing solids.,

651 Set Theory

We begin the rcjvicw of set theory by introducing some definitions followed by set
algebra (operations on sets) and laws (properties) of the algebra of sets. At the
end, the concept of ordered pairs and cartesian product is introduced. A set is
defined as a collection or aggregate of objects. The objects that belong to the set
are called the elements or members of the set. For example, the digits 0, 1, ..., 9
form a set (set of digits) D whose elements are 0, 1, ..., 9. While the concept is
relatively simple, the elements of a set must satisfy certain requirements. First, the
elements must be well defined to determine unequivocally whether or not any object
belongs to the set; that is, fuzzy sets are excluded. Second, the elements of a set
must be distinct and no element may appear twice, Third, the order of the elements
within the set must be immaterial. To realize the importance of these requirements
in geometric modeling, the reader can apply them to a point set of eight elements
which are the corner points of a block.

The elements of a set can be designated by one of two methods: the roster method
or the descriptive method. The former involves listing within braces all the elements
of the set and the latter involves describing the condition(s) that every element in
the set must meet. The set of digits D can be written using the roster and the

descriptive methods respectively as
D=1{0,1,2,3.4,56,7,8,9]} (6.4)

and D={x:x=0,1,2,3,4,5,6,7,8,9) (6.5)

Equation (6.4) reads as ““D is equal to the set of elements 0,1.2.3,4,5,6,7,8,9.7
Equation (6.5) reads as “‘D is equal to the set of elements x such that x equals 0, 1,

CﬂDfCAM Theory and Practice

336 =

2.3,4,5.6. 7.8 9. The colon in EQ. (6.5) is sometimes replaced 1, ,

that is, D = (x1x=0: 1+ - 9}, Regardless of se! designation, seq .+ Micy

nnnmcmbﬂrﬂhip is customarily indicated by € and & respectively, If‘nlhm""hin by

D, we mean 9 is an element (or ml?!]ﬂhﬂf} of the set of digits D o g h‘-‘m Wiy,

Si*ﬂ'lilﬂl'l'-"'* _ 92 g D means that — 2 is not an element of D, Ej“ﬂgﬁk"%
Two sels F ﬂ.nd Q are ﬂquﬂ]* written P= Q'I it the two et ﬂﬂntai 0 “.

same elements. For ~xample, the two sets P={1,3,5, 7} and g = |) gx“tuy th

3 ®

vy element in Pisin Q and every ela!menlin QJisin p The: v i8R
is denoted by # (P=0C reads ‘P does not equal Q). « The i, 'u;.,;u”

AsetRisa subset of another set S if every elementin Risin s T Ity
for subset is & and RS S reads “R is a subset of §.” Analogous 11'.:.- he oty
notation for not subsel is o . If it happens that all elements in ® arE and g n
elements in § arc not in R, then R 18 called a proper subset of § Hndei;n S by

gt |
— S. This means that for R to be a proper subsel of §, § must have aj] ¢} wnu;.né

R plus at least onc clement that is not in K. For example, given S = | 1Emu“t-‘i 0f
then R = {1, 3, 3, 71 is a subset of.§ and R = {5, 7} is a proper Sul;l 3,7
Fﬂ]‘lﬂﬂ":ﬁ'r-. R cC o R M Ne= R and R # 5 {ﬂﬂ" reads “if and {}[]1}-' ":u] o S0 of IEI_
RuUS=S5Sand R#S. TREsy

There are two S€15 that usually come Lo mind when discussing sets and
The universal set Wis a set that contains all the elements that the analyst ws.u_
The e v 1t is problem-dependent. In solid modeling, W contains B g
in E° are the elements of W. In contrast the null (sometimes referred 1o Pﬂmn
empty) set is denned as a set that has no elements or members. It is udes;igrmfh v
the null set symbol . The null set is analogous to zero in ordinary algebra =

Having introduced the required definitions, we now discuss set alggbr‘ﬂ
algebra consists of certain operations that can be performed on sets to pm;! Sel
other sets. These operations are simple in themselves but are powerful WEW
combined with the laws of set algebra to solve geometric modeling problems 1}&2
operations are most easily illustrated through use of the Venn diagram named afie
the English logician John Venn. 1t consists of a rectangle that conceptually repmmm:
the universal set. Subsets of the universal set are represented by circles drawy
within the rectangle or the universal set.

The three essential set operations are complement, union and intersection. The
complement of P, denoted by cP (reads “P complement”), is the subset of elements

of W that are not members of P, that is,
cP ={x:xe P] (6.6
The shaded portion of the Venn diagram in Fig. 6.12a shows the complement of .
The union of two sets P (read " FP union ") is the cubset of elements of §
that are members of either P or Q, that is,
Pu@={x:xe Porxe 0} (6.7
The union is shown in Fig. 6.12b as the shaded area.

The intersection of two sets P Q(read™F :ntersect (") is the subsel of element
of W that are simultaneously elements of both P and @, that is,

PrQ={x:x€ Pandx e]

equal, gince CvVel

bise
hl::g-; [L]-

(6.8

Types and Mathenia ical Rep
aded portion in Fig, 6.12¢ showe :
The shi SNOWS the intersee : :
PAW=Pand P ~cop — scChonof Pand . [tis ea
hat CP =@ Sety that have o ::ummungc:]nrnent?;nt'z

resentations of Solids = 337

wd t'-
t;

1]
E 1
- w

Complementation (U
{ar) P nwom (£ oy () Intersection (£ ~)

@) @B (er

{d) Difference (P — () (e} Difference (Q — P

(/) Exclusive union
P) or symmetric
difference (P A

Fig. 6.12 Vemn Diagram of Set Algebra

Two additional set operators that can be derived from the above set operations
gre difference and exclusive union. The difference of two sets P — Q (read “P
MiDUS Q") is the subset of clements of W that belong to P and not {, that is,

P—QO={xxe Pandx g Q] (6.9)

G O-P={x:xe Qandxe P) (6.10)
Figure 6.12d and e shows the difference operator. The difference can also he
expressed as

P-Q=PrcQ _ (6.11)

The exclusive union (also known as symmetric difference) of two sets P O (also
written as P A @) is the subset of elements of W that are members of P or @ but not
of both, that is, '

PuPQ={xixe P Q) (6.12)
Figure 6.12f shows the exclusive union. Using the Venn diagram it can be shown
that P v @ can also be expressed as c¢(P m Q) m (P W Q), (P N cQ)
VPR Q) (P-0)u(Q—P)or(PUQ)—(PQ).

The laws of set algebra are in some cases similar to the laws of ordinary algebra.
Just as the latter can be used to simplify algebraic equations and expressions, the
former can be used to simplify sets. The laws of set algebra are stated here without
any mathematical proofs. Interested readers can prove most of them using the Venn
diagram. These laws are:
the commutative law (similar to ordinary algebra p + ¢ = g + p and pg = gpJ:

PUQ=QUP (6.13)

338 = CAD/CAM Theory and Practice
the ﬂséﬂcialtivu law [similar to ordinary algebrap + (g + r) = (p + g)

plgr) = (pg)rl:

PU(QUR=(PUQUR 615
PAQONR=(PNQNR [ﬁ.lﬁj
the distributive law [similar to p(g + r) = pg + prl:)
PU(@QnR=(Pu@)n(PUR) fE‘-T?]
PrR(QUR)Y=(PNQ)V (PN R) “5-13}
the idemoptence law:
PmnP=P (6.19)
e et & (6.20)
the involution law:
clcP)=F (6.21)
and
Pud=pF (6.22)
PAW=P (6.23)
PucP=W (6.24)
PrcP=1{ (6.25)
c(Pu)=cPrncQ (6.26)
c(PnQ)=cPuc@ (6.27)

where Egs. (6.26) and (6.27) are DeMorgan’s laws and Eqs. (6.13) to (6.26) provids
the tools necessary to manipulate and simplify sets. For example, using Egs. (6.13),
(6.17) and (6.19) one can prove that the set (F Q) v (P M Q) is equal to the sgy
P . The Venn diagram can also be used as an informal method to reach the
same conclusion. From a geometric modeling point of view, these equations, or the
set theory in general, can operate on point sets that represent solids in E or they
can be used to classify other point sets in space against solids to determine which
points in space are inside, on, or outside a given solid.

The concept of the cartesian product of two sets is useful to geometric modeling
because it can be related to coordinates of points in space. The concept of an ordered
pair must be introduced first. Let us assume that a and b are two elements. An
ordered pair of @ and b is denoted by (a, b); a is the first coordinate of the pair (a,
1) and b is the second coordinate. This guarantees that (a, b) # (b, a) ifa # b, The
ordered pair of @ and b is a set and can be defined as

(a, b) = {{a], {a. b}]} (6.28)

Equation (6.28) implies that the first coordinate of the ordered pair is the first
element {a) and the second coordinate is the second element {a, #]; both clements
form the set of the ordered pair (a, #). If a = b, then (a, a} = {{a}, {a, a}} = {[a],
_{a}} = {{a)}. Based on this definition, there is a theorem which states that two
ordered pairs are equal if and only if their corresponding coordinates are equal,

that is, (a, #) =(c, d)y <+ a=cand & = d.

Type
¥pes and Mathemgtical Representalion

The cartesian product is the conee
e g Pt that ¢;
two sets, the cartesian pr an be
uith H‘ﬂﬁ all Pnssibiec;izrmmn product of the sets, designate ' :
containing ered pairs (a, b) such thaq é: !:Irtm"duh.:}r Gk ke
: * and » £ B, that is,
xample, A = {1, 2 e dmdbe A (6.29
H‘,'Ei:u'l?;:3 1]; {.’«: .;}} hm3}llﬂdﬂ={1.4]~tllﬁﬂﬂ % B = =)
[2.4}1 L :._1“' ; . ﬂtEthm‘ﬂ'xﬂ:ﬂfﬂxg We d = {(1, 1}, (1, 4), (2, 1),
cartesian pro uct of three sets can now be intro du‘cedﬂ" 1Ennte A X A by A% The
AXxBxxC=AXBY>x C= =

sof Solids = 339

used Lo form ordered pairs. 1f A

W, b, cyac A, b
1 e T ,be B,
where (a, b, €) is an ordered triple defined b ce C}

3 ¥ (a, b, ¢) = ((a, } :
usually denoted by A”. In general, an n-tuple ¢ ad,), c). A=A xAis
fn sets and takes the form (. ay, . Ple can be defined as the cartesian product

b ﬂ o 3 r "
».quples and 3-tuples respectively. w)- Ordered pairs and triples are considered

(6.30)

Equations (6.29) and (6.30) can be used to d i

1 > At efine points and thei inate

in the Fﬂﬂteﬂ? 21;152[‘hl“?:;“'}“ If we Cﬂl'llﬂldﬂr a set of points (set of reaI?-::; ;?;!i‘.f;;lﬁﬁﬂ

one-dimensio uclidean space E’, then R* defines a sétof points in E*; each l'rsl
: g i

defined by two numbers or an ordered pair. Simi 3 :
g each is defined by three numbers ﬂf"-:'ll"l nr:j.r;ur}:c-lrlt}r; pﬁndﬁﬁ SERAEELRE POy

fafﬁpltiﬁl - A point set § that defines id in E2 i

L% S i s asolid in E :
Eﬂd e ihren sels whose cartesian product produces S, 15 a set of ordered triples.
colution The point set can be writien as

S={P, P, ..., P,) (6.31)

where Py, P3,..., P, are points inside or on the solid. This set can also be written as

'S . [{Il ¥1» El]’ (.:[:E., }I-Z‘ 32}1""‘ ('xjr! }Irt"' E,.H‘ = ';{.1';., J’]-'l EI'1}:- 1 £ I :; .ﬁ]‘

(6.32)
We can define three sets A, B and C such that
A= {x), X300, X,) (6.33)
B = (¥, Yauees Yl (6.34)
C = {2, Zz,0es Zy) (6.35)
Let us cle_ﬁns_ ﬂ'lf.‘- set P as thg cartesian product A X B x C, that 1s,
P=AxBxC=(xy,5)rl1siznl <jsn isk=nj (6.36)

The point set § of the solid given by Eq. (6.32) is clearly a (proper) subset of the
set P, that is, § © P. The elements of § are equal to the elements of P only when
I =j = k.

Let us introduce a new notion called the ordered cartesian product. It is a more
restricted special case of the cartesian product concept. It is applied only to sets that
have the same number of elements. We denote it by “®" to differentiate 1t from "=
which is used for the cartesian product (not ordered). If we have two sets defined as
A = {ay, G ey A,) and B = {by, by,.., b1, then '

A®B=1{(a,b) aeAbeBandl=isn] (6.37)

ry and Pract ice

340 CAD/CAM Theo

is similarly given by

product of three sels
e A, bhbeBoe Cand | <«

The ordered cartesian
A@B®C=(A®B®C=1{; by, €;) Ay -

[ﬁ__"l;ﬂ:l

dered cartesian product of 1.
i Bas, (6.32) and (6.38) shows that the of _ the
Comparing Bgs. (6.32) lEq!i. (6.33) to (6.35) gives the point sct S of a solig. This

i b ' = L] g i
ﬁ;;:}ﬂg.ﬂﬂj .EE :::inbcfnlmcd o A, B and C might be useful in classificaition PrOblem,

6.5.2 Regularized Set Operations

The set operations (¢, W, Mand =) covered in the previous Section are also knowy,
as the set-theoretic operations. When we use these operations in Ecometric rﬂﬂdeling
to build complex objects from primitive Ones, the complement OPEration is ugyg))
dropped because it might create unacceptﬁblﬁl gEE{lmEtr?"- Furth ermore, if we yge tha
other operations (L, M, —) without regularization in solid ""Iﬂdﬂlll"ET they may cayy,
user jnconvenience (say, user must not have overlapping faces of objects or
primitives). In addition, objects resulting from the.?-: operations may lﬂf*'k 2eometri,
closure, may be difficult to validate, or may be inadequate for application (e.g..
interference analysis). _

To avoid the above problems, the point sets that represent objects and the sel
operations that operate on them must be regularized. Regular sets and regularized
set operations (boolean operations) are considered as boolean algebra,

A regular set is defined as a set that is geometrically closed [refer to Eq. (6.3)].
The notion of a regular set is introduced in geometric modeling to ensure the validity
of objects they represent and therefore eliminate nonsense objects. Under geometrje
closure, a regular set has interior and boundary subsets. More important] v, the
boundary contains the interior and any point on the boundary is in contact with 5
point in the interior. In other words, the boundary acts as a skin wrapped aroung
the interior. The set 5 shown in Fig. 6.7 is an example of a regular set while Fjg
6.8 shows a nonregular set because the dangling edge and face are not in ::nm.qgl
with the interior of the set (in this case the box).

Mathematically, a set S 1s regular if and only if

== (6.39)

This equation states that if the closure of the interior of a given set yields that Same
given set, then the set is regular. Figure 6.13a shows that set § is not regular because
S =KiS is not equal to 5. Some modeling systems use regular sets that are open or
do not have boundaries. A set § is regular open if and only if

ks (6.40)

This equation states that a set is regular open if the interior of its closure is equal to
the original set. Fig. 6.13b shows that S is not regular open because 5 = ik is not
equal to 5.

Set operations (known also as boolean operators) must be re gularized to ensure
that the_jr outcomes are always regular sets. For geometric modeling, this means
that solid models built from well-defined primitives are always valid 3:1:.'1 represent
valid (no-nonsense) objects. Regularized set operators preserve homogeneity and

Types and May 'ematical Representations of Solids

= 34
gpﬂlial dimensionality. The former mean

s that no dangling parts should result from
asing these operators and the latter means that jf two tghref? —E:l::j;; sional uhje::tjs are
combined by one of the oper ators, the resulting object should not be of lower
gimension (two Or one d?mcnﬂmn}. Regularization of ser operators is particularly
useful when users deal with overlapping faces of different objects, or in other words
when dealing with tangent objects, as wil

be seen shortly in an example.
Dangling edge

1%‘3%/////%

Fig. 6.13 Set Regularity

Based on the above description, regularized set operators can be defined as
follows:

Pu*Q=ki(Pu Q)

(6.41)
Pr*Q=ki(Pn Q) (6.42)
P-*Q=ki(P-Q) (6.43)

c* P =ki(cP) (6.44)
where the superscript * to the right of each operator denotes regularization. The
sets P and O used in Eqs. (6.41) to (6.44) are assumed to be any arbitrary sets.
However, if two sets X and ¥ are r-sets (regular sets), which is always the case for
geometric modeling, then Eqs. (6.41) to (6.44) become

AV*Y=XUY (6.45)

X*F¥Y=XnY < bXand bY do not overlap (6.46)
X*¥=k{X-) (6.47)
c* X = k(eX) (6.48)

If bX and bY overlap in Eq. (6.46), Eq. (6.42) is used and the result is a null object,

Figure 6.14 illustrates Eqs. (6.41) to (6.48) geometrically. The figure does not
include the complement operation.

i‘f-?&mpleéﬁs What are the results of applying the regularized set operations
to objects A and B shown in Fig. 6.157

-

42 = CAD/CAM Theory and Practice
Dangling edges
v %
7
(PO e
57
% Wz
KilP o O = PO
7 L
O U
(N} kKilP =P Q
These cdges
do not E!Iﬁ%
_ 4‘-% %-‘L% %
% 7
P-0Q P - ki(X)) = P
{a) Monregular sets
N 77
NN .
o /
7 v,
X
XuYas XY
?W L XnY=X~"Y
A f %
77
——=Z 7~
This boundary aiize 200 Z 4
does not exist X-F k(X -¥)=X-
() Regular sets
Fig. 6.14 Regularized set operators
Solution

The positions of objects A and /8 shown in Fig. 6.15 are chosen 1o illustrale
some langency cases of objects. A and B are r-sets. The results of applying Egs
(6.45) 10 (6.47) are shown in Table 6.2 for each case. For all the cases, the results of
the regularized union operations are obvious. However, the results of the intersection
operations may be less obvious. For case 1, A m B is the common face which s
eliminated by the regularization process. For casc 2, the intersection does nol exisl
therefore the result is an empty set or a null object. For case 3, Am B is the
common edge which is eliminated by the regularization process. For case 4, AND
is the common block and the common face. The common face is eliminated aflef
regularization. The results of the regularized difference operations are obvious. If

cases 1, 2 and 3, A — * B is the object A itself. For case 4, the difference is a disjoirt
object. Such an object should not be viewed as two objects. Any further sel @

pcrﬂti’:'f'
or rigid-body motion treats it as one object.

Types and Mathematical Representations of Solids = 343

The reader is advised to carry the details of these results following the steps
qiustrated in Fig. 6.14. The reader should also try to use these cases to test any

available solid modeling package.

Cominoi fhoe

Common edge

Tangent face

Fig. 6.15 Sample Objects

6.5.3 Set Membership Classification

In various geometric problems involving solid models, we are often faced with the
following question: given a particular solid, which point, line segment, or a portion
of another solid intersects with such a solid? These are all geometric intersection
problems, For a point/solid, line (curve)/solid, or solid/solid intersection we need
to know respectively which points, line segments, or solid portions are inside,
outside, or on the boundary of a given solid. These geometric intersection problems
have useful practical engineering applications. For example, line/solid intersection
can be used to shade or calculate mass properties of given solids via ray-tracing
algorithms, while solid/solid intersection can be used for interference checking
between two solids.

In each of the above problems, we are given two point seis: a reference set S
and a candidate set X. The reference set is usually the given solid whose inside
(interior) and boundary are iS and bS respectively. The outside of § is ils
complement ¢S. The candidate set is the geometric entity that must be classified
against §. The process by which various parts of X (points, line segments, or solid
portions) are assigned to iS5, bS and/or ¢S is called set membership classification.

A function called a set membership classification function exists which provides
1 unifying approach to study the behavior of the candidate set X relative to the

eference set S. The function is denoted by M|.] and is defined as
M[X, 5] =(Xin S, Xon §, X outS)

(6.49)

CAD/CAM Theory and Practice

Table 6.2 Results of Example 6.3

Objects Set operation Resuly _-_-_-_‘_‘_‘_‘_h"‘_

/ S
’h‘!* AU* B

157 :

Am* B & (null nhjeﬁ

.__‘_-_._l_-__‘-""‘—\—._

@ T e
Py ﬂﬁb"r AUt B @ @

Am* B & (null object)
--_‘_'—I—h
- |
Ay 4
i
’...___..4‘ Au* R
Arm* B & (null object)
- |G
Arn* B q
I-‘_""‘-i--
T
s
e

345

Types and Mathematical Representations of Solids

Eqummn (6.49) implies that the input to M[.] is the two sets X and § and the
output is the classification of X relative to 8 as in, on, or out S. Figure 6.16 shows
an example of classifying a portion of a line L against the polygon K.

b

o
bd'}

£

i
;rf vy .,,_
| & ﬂ,w/"’

L '3""
LN

"\-._‘___-_-
MLR]=(LinR.LonR.LoutR “‘t‘:‘f'\"xi
[']_[lnlﬁl! on - ot .} 4.1"\%:

Fig. 6.16 Line/polyzon Set Membership Classification

The implementation of the classification function given by Eq. (6.49) depends
to a great extent on the representations of both X and § and their data structures.
Let us consider the line/polygon classification problem when the polygon (reference
solid) is stored as a B-rep or a CSG. Figure 6.17 shows the B-rep case. The line L

is chosen such that no “on™ segments result for simplicity.

o R - FE
Z
3 ¥
.P F 5 / o ﬁF} P
T =7 3
Fe Fa
, : o

Fig. 6.17 Line/polygon Classification for B-rep

"he algorithm for this case can be described as follows:
Utilizing a line/edge intersection routine, find the boundary crossings P,

and Pz.
2. Sort the boundary crossings according to any agreed direction for L. Let the

sorted boundary crossing list be given by (P, P, P,, P3).
3. Classify L with respect to R. For this simple case, we know that the odd

boundary crossings (such as P,) flags “in” segments and the even boundary
crossings (such as P,) flags “out” segments, Therefore, the classification of

L with respect to R becomes

[Py, Pyl < L out R

36 = CAD/CAM Theory and Practice

[P. PsleLinR
[P P e Lot R
If the line L contains an edge of the polygon, the above Chis':til“:cminn Crite
of odd and even crossings would not work and another criterion should pe o
In this case, a direction (clockwise or counterclockwise) to traverge the po u:’"i
boundaries is needed. Let us apply this idea to the problem at hand See hif J
would work, 11 we choose the counterclockwise direction, polygon VETlices Wu“ :
be numbered as shown in Fig. 6.17. Now we know that iR is always 1o the h:ﬁl:i iﬂ.
any edge. The new classification criterion can be stated as follows, ey e ﬂsz-;unm
that an edge is defined by the two vertices V; and V; | . Whenever there iq]e
boundary crossing on an edge whose V;is above Land V, | is below L, thie ‘-’Tﬂﬁ"-i{nﬂ
is fagged as “in” and whenever V; is below L and V; _ | is above, it js ﬂilégm
“out.” This criterion obviously gives the same result as the previous Criterion for
this example.
Let us consider the same line/polygon classification problem when the
is stored as a CSG representation. The classification for this case is doy
primitive level and the algorithm becomes as follows:

Finn

pi_ﬂ}'gn“
12 il the

L. Utilize a line/primitive intersection routine to find the intersection points of
the line with each primitive of &.

Use these intersection points to classify the line against each primitive of R
Combine the “in™ and "on” line segments obtained in step 2 using the same
boolean operators that combine the primitives. For example, if two primitives
A and B are unioned, then the “in" and “on” line segments are added.

4. Find the “out” segments by taking the difference between the line (candidate
set) and the “in” and “on” segments. Figure 6.18 shows the “classify” and
“combine” strategy for the three boolean operations of two blocks A and i
Motice that the polygon that results from the union operation is the same g
the polygon R used in the classification of the B-rep case. The classification
of Lrelativeto A and B is straightforward. To combine these classifications,
we first combine Lin A and L in B to obtain L in R, using the proper boolean
operator. The L on R can result from combining three possibilities: L in A
and Lon B, Lon A and Lin B and L on A and L on B. All these possibilities
are obtained and then combined to give L on R. The remaining classification
L out R is obtained by adding L in R and L on R and subtracting the result
from L itself.

The above example has considered the polygon case. The example does nof
purposely include “on” segments because they are ambiguous and need more
information (neighborhoods) to resolve their ambiguities for both B-rep and CSG
(refer to Sec. 6.8 for details). Algorithms to classify candidate sets against three-
dimensional solids can follow similar steps to those described in the above example
but with more elaborate details.

6.6 £ HALF-SPACES -

w1

i . 3 e

HalF-spaces form a basic representation scheme for bounded solids. By '-‘ﬂ'l'”t""r""f1
= ® a " 4 n " - - H s L 1
half-spaces (using sct operations) in a building block fashion, various solids €3

;‘

Types and Mathematical Representations of Solids £ 351

ye noted from this example that using half-spaces and/or their

' cphould be :
or directed surtace normals, any complex object can be modeled as

En-mnl:-: : ; . .
ﬂm“:iml of the intersection ob half-spaces, that is,
I
the b
i
s=u(N
=LE (6.50)
i=1
% is the solid and n is the number of half-spaces and/or their complements.
:; an .:-'i.nmpl'-"- a box is the union of six mtersected half-spaces,
E -4
6.6.3 Remarks
The half-space representation scheme is the lowest level available to represent a
xobject 454 solid model. The main advantage of hall-spaces is its concisencss
;n senting objects ¢ ompared to other schemes such as CSG. However, it has a
few disadvantages. Fhis representation can lead to unbounded solid models if the
h unboundedness can result in missing faces and abnormal

i« not carcful. Suc
images. 1t can also lead to system crash or producing wrong results if
ication algorithms attempt to access databases of unbou nded models. Another
major disadvantage is that modeling with‘ half-spaces is cumbersome for casual
and designers to use and may be difficult to understand. Therefore, half-
resentation is probably useful only for research purposes. Modelers, such

as SHAPES, TIPS and PADL, attempt to shield users from dealing directly with
the unbounded half-spaces.

¢9'E' BOUNDARY REPRESENTATION (B-rep)

Boundary representation is one of the two most popular and widely used schemes
(the other is CSG discussed in Sec. 6.8) to create solid models of physical objects.
A B-rep model or boundary model is based on the topological notion that a physical
object is bounded by a set of faces. These faces are regions or subsets of closed and
orientable surfaces. A closed surface is one that is continuous without breaks. An
orientable surface is one in which it is possible to distinguish two sides by using
the direction of the surface normal to point to the inside or outside of the solid
model under construction. Each face is bounded by edges and each edge is bounded
by vertices. Thus, topologically, a boundary model of an object is comprised of
faces, edges and vertices of the object linked together in such a way as to ensure
the topological consistency of the model.

The database of a boundary model contains both its topology and geometry.
Topology is created by performing Euler operations and geometry is created by
performing euclidean calculations. Euler operations are used to create, manipulate
and edit the faces, edges and vertices of a boundary model as the set (boolean)
omrations create, manipulate and edit primitives of CSG models. Euler operators,
& boolean operators, ensure the integrity (closeness, no dangling faces or edges,
¢ic.) of boundary models. They offer a mechanism to check the validity of these
Tf?r:;-:ﬂtht?r validity checks may be used as well. Geometry includes coordinates

es, rigid motion and transformation (translation, rotation, etc.) and metric

shaded

352 E CAD/CAM Theory and Practice

information such as distances, angles, areas, volumes and munl;m !.'E NSOTS. I shyy
be noted that topology and geometry are interrelated and cannot be separate e

; ity M) W
Both must be compatible otherwise'nonsense objects may result. Figure 6 2+

£y ‘hhﬁ‘..";t;
a square which, after dividing its top edges by lfnrﬂduﬂmg 4 NCW Vertex, s st
valid topologically but produces a nonsense objeét depending on the ECOmetry op
the new vertex.

N7

Monsense objcer

bi (&) Modified ohject
{a) Original ohject

Fig. 6.22 Effect of Topology and Geometry on Boundary Models

In addition to ensuring the validity of B-rep models, Euler Operators provide
designers with drafting functionality. These allow solid models to-be buij up
graphically by incrementally adding individual vertices, edges and faces 1 the
model in such a way as to always obey Euler’s laws, as will be seen in Sec. 6.7.2,
Euler operators are considered to be lower level operators than boolea
in the sense that they combine faces, edges and vertices to form B-rep models,

Boolean operations are not considered a part of the representation of 3 B
model, but they are often employed as one of the means of creating, manipulating
and editing the model as mentioned in Sec. 6.1 and shown in Table 6.1. The effect
of a Boolean operation on a CSG model (see Sec, 6.8) is simply an addition to the
CSG tree. However, since B-rep systems require an explicit representation of the
boundary of the solid, they must evaluate the new boundary that is the r

esult of the
Operation. .

While B-rep systems store only the bounding surfaces of the solid, it is sall
possible to compute volumetric

surfaces of the half-spaces as
The desired pProperties of a
B-rep schemes. These sch
unambiguously, that 18, as
(unambiguous faces result in

its primitive surfaces,
Tepresentation scheme digey ssed in Sec. 6.4 apply 0
Cmes are unambhi
regions of closed
unambiguous B

guous if faces are represented
orientable surfaces. This claim
-rep) is based on the fact that an -5l

Types and Mathematical REP:'ESL:HI:?:‘:'&JIS of Solids £ 353

is defined unambiguously by its boundary and that non-r-sets are nol defined
unambiguously by their boundaries. The validity of B-rep models is ensured via
Euler operations which can be built into the syntax of a CAD/CAM system.
However, these models are not unique because the boundary of any object can be
divided into faces, edges and vertices in many ways. Verification of uniqueness of
boundary models is computationally expensive and is not performed in practice.

6.7.1 Basic Elements

If a solid modeling system is to be designed, the domain of its representation scheme
(objects that can be modeled) must be defined, the basic elements (primitives)
needed to cover such modeling domain must be identified, the proper operators
that enable the system users to build complex objects by combining the primitives
must be developed and finally a suitable data structure must be designed to store
all relevant data and information of the solid model. Other system and geometric
atilities (such as intersection algorithms) may also need to be designed. Let us
apply these ingredients to a B-rep system.,

Objects that are often encountered in engineering applications can be classified
as either polyhedral or curved objects. A polyhedral object (plane-faced polyhedron)
consists of planar faces (or sides) connected at straight (linear) edges which, in
turn, are conneeted at vertices. A cube or a tetrahedron is an obvious example. A
curved object (curved polyhedron) is similar to a polyhedral object but with curved
faces and edges instead, The identification of faces, edges and vertices for curved
closed objects such as a sphere or a cylinder needs careful attention, as will be
seen later in this section. Polyhedral objects are simpler to deal with and are

covered first.
The reader might have jumped intuitively to the conclusion that the primitives
ices. This is true if we can answer the

of a B-rep scheme are faces, edges and verli
following two questions. First, what is a face, edge, or a vertex? Second, knowing

the answer to the first question, how can we know that when we combine these
ves we would create valid objects? Answers to these gquestions can help
users to create B-rep solid models of objects successfully. To show that these
answers are not always simple, consider the polyhedral objects shown in Fig.
6.23. Polyhedral objects can be classified into four classes. The first class
(Fig. 6.23a) is the simple polyhedra. These do not have holes (through or not
through).and each face is bounded by a single set of connected edges, that is,
bounded by one loop of edges. The second class (Fig. 6.23b) is similar to the first
with the exception that a face may be hounded by more than one loop of edges
(inner loops are sometimes called rings). The third class (Fig. 6.23¢) includes objects
_ with holes that do not go through the entire object. For this class, a hole may have

a face coincident with the object boundary: in this case we call it a boundary hole.
On the other hand, if it is an interior hole (as a void or crack inside the object), it
has no faces on the boundary. The fourth and the last class (Fig. 6.23d) includes
objects that have holes that go through the entire objects. Topologically, these throu gh

holes are called handles.

primiti

A
A
un

r

CAD/CAM Theory and Practice

B A

(a) Simple polyhedra

Interior hole

(&) Polyhedra with handles (through holes)

" Fig. 6.23 Types of Polyhedral Objects

ives of a B-rep %
houndary ok

A veriex “ d
intersecung”

scheme

With the above physical insight, let us define the primit
and other related topological items that enable a user to create Thﬂ
of an. object. They apply to both polyhedral and curved objects.
unique point (an ordered triplet) in space. An edge is a finite, “UH'HE!T;! dist
directed space curve bounded by two vertices that are not necessart ,‘s" d-m:f-'-?‘ o
face is defined as a finite connécted, non-self-intersecting, region of close gegueti
surface bounded by ome or more loops. A loop is an ordered ﬂh&::nnurll_!fl_-c ol
of vertices and edges. A loop defines a non-self-intersecting, prece™ IZ:;rh guct
space curve which, in turn, may be a boundary of a face. In Fig. 6'23:1‘]7;5_ .23
has one loop while the top and the right side faces of the object shown 111 fined 8%

| -~ 1% !ﬂ:
have two loops each (one inner and one outer). A “not” through hole is ¢

inct. &

Types and Mathematical Representations of Solids Z 355

a depression in a face of an object. A handle (or through hole) is defined as a
assageway that pl":‘r{-‘ﬂﬁithﬂ object cumplet_ely_ The topological name for the num ber
of handles 10 an uf:':'jeﬂt 1S genus, The last item to be defined is a body (sometimes
called a shell). It is a set of faces that bound a single connected closed volume.
Thus a body is an entity that has faces, edges and vertices. Such an entity may be a
yseful solid or an intermediate polyhedron. A minimum body is a point. Topologically
this body has one face, one vertex and no edges. It is called a seminal or singular
pody. It is initially attached as part of the world. The ohject on the right of Fig.
6.23c has two bodies (the exterior and interior cubes) and any other object in Fig.
6.23 has only one body. .
Faces of boundary models possess certain essential properties and characteristics
that ensure the regularity of the model; that is, the model has an interior and a
houndary. The face of a solid is a subset of the solid boundary and the union of all
faces of a solid defines such a boundary. Faces are two-dimensional homogeneous
regions SO they have areas and no d_ﬂngling edges. In addition, a face is a subset of
some underlying closed oriented surface. Figure 6.24 shows the relationship between
a face and its surface. At each point on the face, there is a surface normal N that
has a sign associated with it to indicate whether it points into or away from the
solid interior. One convention is to assume N positive if it points away from the
eplid. Tt is desirable, but not required, that a face has a constant surface normal.
The representation of a face must ensure that both the face and solid interiors
can be deduced from the representation. The direction of the face’s surface normal
can be used to indicate the inside or outside of the model. The surface equation
must be consistent with the normal chosen convention. For example, if the face
belongs to a Bezier or B-spline surface, the normal vector could be defined as
aP/ov % dP/du or dP/du x JP depending on the chosen normal convention and the
directions of parametrizing the surface. Practically, some CAD/CAM systems
store the surface normal and its sign as part of the face data (although it could be
computed from the surface equation) since it is a useful parameter in many
applications such as generating graphics displays or NC machining data. The
face interior can be determined by traversing the face loops in a certain direction
or assigning flags to them. In traversing loops, the edges of the face outer loop is
traversed, say, in a counterclockwise direction and the edges of the inner loops
are traversed in the opposite direction, say the clockwise direction. If one of
the loops is a continuous or piecewise continuous curve, the parametrization
direction is chosen to reflect the traversal direction. Figure 6.25 shows some traversal
examples. The other alternative assigns one flag to outer loops and another one (o
inner loops.

Having defined the boundary model primitives, we now return to the question
of how they can be combined to generate topologically valid models. The
development of volume measure (valid models) based on faces, edges and vertices
is rigorous and not easy. Euler (in 1752) proved that polyhedra that are homomorphic
to a sphere (i.e., their faces are non-self-intersecting and belong to closed orientable
surfaces) are topologically valid if they satisfy the following equation:

F—E+V-—-L=28B-G) (6.57)

CAD/CAM Theory and Practice

L
o
=]

nm

Plane of the face
(@) Underlyin g surface is a planc

N

A

Surface

Face edpe

(b) A general underlying surface
Fig. 6.24 Underlying Surface of a Face

Fig. 6.25 Traversal of Face's Loops

() Piecewise lincar loops

O

(b) Circular loops

where F, E, V, L, B and G are the number of faces, edges, vertices, fﬂf—‘ﬂsr ;g"'::
loop, bodies and genus (handles or through holes) respectively. qulﬂ_tm" {ﬁ“,) i:s
known as the Euler or Euler-Poincare law. The simplest version of this equation

Types and Mathematical Representations of Selids = 357

~E+ V= 2 which rapp}i.::.-; o !mlyhedm shown in Fig. 6.23a. With Eq. (6.57) in
: iﬂ“d‘ i has been easier to take 1t as the more primitive definition of a pc:-I}"r;:a-:ern
o which to base its construction and data structure. From a user point of view. to
te the boundary model of a given object, the user identifies the proper number
for all the variables of Eq. (6.57) and substitutes them into the equation to ensure
oalidity- Then Efr'f-fﬂf"_“ cﬂ“:““ﬂ“dﬂ (Euler Dpe‘rmiﬁns'j are used to create the model
' ensures the validity simultaneously. This is similar to identifying primitives
;m d boolean operators i ﬂlﬂlﬂﬂﬂﬂ of £l CS5G-based user interface. Table 6.3 shows
e counts of the various variables of Eq. (6.57) for polyhedra shown in Fig. 6.23.
The numbErne of these pﬂf}-'ht‘:dr:li in the table is taken from left to right and top to
pottom with the top left cube being polyhedron number 1 and the bottom right
object being number 9.

Euler’s law given by Eq. (6.57) applies to closed polyhedral objects only. These
are the Vv alid solid models we like to deal with. However, open polyhedral objects
do not satisfy Eq. ({1,5'}'): This class of objects includes open polyhedra that may
resull during constructing boundary models of closed objects as well as all

:wc:—dimansmna.l polygonal objects. Open objects satisfy the following Euler’s

'lnw:

F-E+V-1L=B-GCG (6.58)
Table 6.3 Counts of Polyhedral Values for Objects of Fig. 6.23

Object number F E Vv L B iz 3
1 6 12 8 0 1 0
2 5 8 5 0 1 0 i
3 10 24 16 0 1 0 |
4 16 36 24 2 1 0 |
5 11 24 16 i 1 0 :
i) 12 24 16 0 2 0 i
7 10 24 16 2 1] i
8 20 48 32 4 1 1 !
9 14 36 24 2 1 1 !
L —— e Wy L T T TR e R =T —=m = =1

Figure 6.26 shows some examples of open objects. The reader can easily verify
equation, B refers 10 an open

that they satisfy the above equation. In the above
body which can be a wire, an area, or a volume. All the objects in Fig. 6.26 have

one body and only bodies of Fig. 6.26¢ have one genus each. It might be interesting
to mention that Eq. (6.58) can foryn the basis of creating a boundary model based
on wireframe modeling. There are some Systems such as MEDUSA that do that.
We now turn from polyhedral objects to curved objects such as cylinders and
spheres. The same rules and guidelines for boundary modeling discussed thus far
for the former objects apply.to the latter. The major difference between the two
types of objects results if closed curved edges or faces exist. Consider, forex ample,
the closed cylinder and sphere shown in Fig. 6.27. As shown in Fig. 6.27, a closed
cylindrical face (and alike) has one edge and two vertices and a spherical face (and

Types and Mathematical Representations of Solids = 371

‘68 E _
SRS HES G)

2 £ CONSTRUCTIVE SOLID GEOMETR

c5G and B-rep schemes are the most popular schemes to create solid models of
hysical objects. This is apparent from the existing research and technological
qctivities. They are the most popular because they are the best understood
representations thus far. CS5G offers representations that are succinct, easy to create
and store and easy Lo check for validity. Moreover, difference and intersection
pperations can IGSFEGﬁFE]}“ provide means for material removal processes and
interference chcckmgl l'{e.tween objects. Interference checking is useful in many
applications such as vision and robot path planning.

A CSG model is based on the topological notion that a physical ohject can be
divided into a set of primitives (basic-elements or shapes) that can be combined in
4 certain order following a set of rules (boolean operations) to form the object.
Primitives themselves are considered valid CSG models. Each primitive is bounded
by a set of surfaces; usually closed and orientable. The primitives” surfaces are
combined via a boundary evaluation process to form the boundary of the object,
that is, to find its faces, edges and vertices. In addition to degenerating an object to
a collection of primitives, a CSG model is fundamentally and topologically different
from a B-rep model in that the former does not store explicitly the faces, edges and
vertices. Instead, it evaluates them whenever they are needed by applications’
algorithms, e.g., generation of line drawings. The reader might then ask the question:
if a CSG scheme has to evaluate faces, edges and vertices, why not use a B-rep
scheme from the beginning? The answer to this guestion entails close comparison
hetween all aspects of both schemes including efficiency and performance. Such
comparison is difficult to make due to all implementation and algorithmic details
involved. However, one answer can be given. The concept of primitives offers a
different conceptual way of thinking that may be extended to model engineering
processes such as design and manufacturing. It also appears that CSG
representations might be of considerable importance for manufacturing automation
as in the study of process planning and rough machining operations.

There are two main types of CSG schemes. The most popular one and the one
we always mean when we talk about CSG models, is based on bounded solid
primitives, that is, r-sets. The other one, less popular, is based on generally
unbounded half-spaces, that is, non-r-sets. The latter scheme belongs more to half-
space representation covered in Sec. 6.6. As a matter of fact, bounded solid
primitives are considered composite half-spaces and the boundaries of these
primitives are the surfaces of the corresponding half-spaces. C5G systems based
on bounded primitives (e.g., PADL-2 and GMSOLID) allow their sophisticated
users to use both their bounded primitives and/or half-spaces Lo create new
primitives, typically called metaprimitives. It is also possible to extend the modeling
domain of a system by implementing new half-spaces and eventually new primitives,
into its software. This implementation does not only require the trivial inclusion of
the half-space equation into the software, but more impaortantly it requires developing
supporting utilities such as intersecting the half-space with itself as well as other

already existing half-spaces.

372 = (CAD/CAM Theory and Practice

The modeling domain of a CSG scheme depends on the half-spaces that undey;,
. its bounded solid primitives, on the available rigid motion ““fj on the availahle o5
operators. For example, if two schemes have the same rigid motion E_“'"j Sel Operating,
but one has just a block and a cylinder primitive and the other has thcsle two plus 4
tetrahedron, the two schemes are considered to have the same domain. Each g
only planar and cylindrical hali-spaces and the tetrahedron primitive the other sysiem,
offers is just a convenience to theuser and does not extend its modeling domyjy,
Similarly, the surfaces that a CSG scheme can represent directly depend on the
bounding surfaces of its underlying half-spaces. Ti}e _m::rst ‘wrlfl?l}' represented
surfaces are the quadric surfaces that bound most existing primitives. Eﬂh‘-‘nding
the solid modeling domain (o cover sculpmrqd_ surfaces requires representing 5
“sculptured’ half-space and its supporting utilities. .

CSG schemes based on bounded primitives ire usually more concise than those
based on half-spaces because half-spaces are lower-level primitives. As an example,
consider the solid shown in Fig. 6.38a. The model is represented b}“ three boundeg

o 6.38b) and seven half-spaces (Fig. 6.38¢). Considering the hgy.

primitives (Fig PALE B iisch
spaces composing the three bounded primitives, it is obvious that 15 half-spaces

(six for each block and three for the cylinder) have been used. Some of these half
the bottom of blocks A and B, are redundant. This
in trade of the conveniences they gajp

it raises the question of the minimg]

spaces, such as the two at
redundancy is perfectly accepted by users
from using bounded primitives. However,
CSG representation of a solid.

Ha 2

Hy
I/'"E"‘\' L o
Hs

e H3 7
= He, P77 T T

b,

“
H-
ﬁ F
A I

) é

{a) Solid (b) Bounded primitives (¢} Unbounded half-spaces

ng. 6.38 Bounded and Unbounded Primitives

The database of a CSG model, similar to B-rep, stores its topology and geometry.
Topology is created via the regularized set (boolean) operations thalt combine
primitives. Therefore, the validity of the resulting model is reduced to the validity
checks of the used primitives. For bounded primitives, these checks are usually
simple (in the form of greater than zero) and the validity of the CS5G model may be
ensured essentially at the syntactical level. This means that in a CSG language a
model is valid if it can be deséribed syniactically correct using this language (user
interface). The geometry stored in the database of a CSG model includes
configuration parameters of its primitives and rigid motion and transformation.
Geometry of faces, edges and vertices are not stored but can be calculated via the
boundary evaluation process.

Types and Mathematical Represenitations of Solids = 373

|e data StrUCTUres of most boundary representations are based on the winged-
sdge structure developed by Baumgart in 1972, data structures of most CSG
prgsenlﬂliﬂﬂﬂ are based on the concept of graphs and trees. This concept is
inn'ﬂ'd""-"sd here 1n cnf:rugh depth to enable understanding of CSG data structures.
The interested reader is referred to any standard textbook on Pascal or data structures
for more details. _
A graph is defined as a set F'f nodes connected by a set of branches or lines.
fach branch in a graph is specified by a pair of nodes. Figure 6.39a illustrates a
ph. The set of nodes is {A, B, C, D, E, F, G) and the set of branches, or the set
of pairs, is {{4, B {A, C}, {B, C), {B, E}, |B, F}, {B. G), |C, D}, {C, E}}.
Notice that these pairs are unordered, that is, no relations exist between the elements
of each pair. For example, the pair {A, B) can also be { B, A). If the pairs of nodes
that make up the branches are ordered pairs, the graph is said to be a directed
graph or digraph. This means that branches have directions in a digraph and become
in a SENse arrows going from one node to another, as shown in Fig. 6.395. The tail
of each arrow represents the first node in the pair and its head represents the second
node. The set of ordered pairs for Fig. 6.39b is {(A, B), (4, C), (C, B) (B, E), (F,

B), (B, G), (D, C), (E, C}].

whi

ey @) &) 0 O it) B G (2

(a) Graph (#) Digraph
Fig. 6.39 Graphs and Digraphs

Each node in a digraph has an indegree and outdegree and has a path it belongs
to. The indegree of a node is the number of arrow heads entering the node and its
outdegree is the number of arrow tails leaving the node. For example, node B in
Fig. 6.39b has an indegree of 3 and an outdegree of 2 while node D has a zero
indegree and an outdegree of 1. Each node in a digraph belongs to a path. A path
from node n to node m is defined as a sequence of nodes 1, N3, ..., f such that n,
= and p, = m and any two subsequent nodes (n,, n;, ;) in the sequence are adjacent
to each other. For example, the path from node A to node G in Fig. 6.39b 15 A, B, &
orA, C, B, G. If the start and end nodes of a path are the same, the path is a cycle.
If a graph contains a cycle, it is cyclic; otherwise it is acyclic.

We now turn our attention to trees. A tree is defined as an acyclic digraph in
which only a single node, called the root, has a zero indegree and every other node
has an indegree of 1. This implies that any node in the tree except the root has
predecessors or ancestors. Based on this definition, graph need not be a tree but
a tree must be a graph. The digraph shown in Fig. 6.39b is not a trec. However, its
modification shown in Fig. 6.40a is a tree. Node A is the root of the tree and nodes

374 E CAD/CAM Theory and Practice

E, F and G, for example, have node B as their ancestor or node 5 has nodes £
and G as its descendants. If the descendants of each node are in order, say, frq,;,
left to right, then the tree is an ordered one. Moreover, when each node of an
ordered tree has two descendants (left and right), the tree 15 called a binary iree
(see Fig. 6.405). Finally, if the arrow directions in a binary tree are reversed sycy,
that every node, except the root, in the tree has an out-degree of 1 and the roo hag
a zero ouldegree, the tree js called an inveried binary tree (sec Fig. 6.40¢), An
inverted binary tree is very usetful to understand the data structure of CS5G mode|g

(sometimes called boolean models).

(#) Binary trce

i) Inveried hinary tree
Fig. 6.40 Types of Trees

Any node in a tree that does not have descendants, that is, with an ouldegree
equal to zero, is called a leaf node and any node that does have descendanis
(outdegree greater than zero) is an interior node. In Fig. 6.40b, nodes D, E, F und
¢ are leaf nodes and nodes B and C are interior nodes, Nodes G and D “are called
the leftrnost leaf and the rightmost leaf of the tree respectively. Nodes ina tree can
also he viewed from a different perspective as follows. Every node of a tree T'isy
root of another tree, called a subtree of T, contained in the original tree T. A subtres
is itself a binary tree. Any tree can be divided into two subtrees: left and right
subtrees of the original tree. Considering Fig. 6.40b, the original tree consists of
seven nodes with A as its root. Its left subtree is rooted at B and its right subtree is
rooted at €. This is indicated by the two branches emanating from A 1o 5 on the lefi
and to C on the right. The absence of a branch indicates an empty subtree. The
binary trees rooted at the leaves D, E, F and G have empty (nil) left and right
subtrees,

Let us return back to the data structures of CSG representations and relate them
to graphs and trees. Consider the solid shown in Fig. 6.4la with its MCS. A block
and a cylinder primitive are enough to create the CSG model of the solid. Fig. 6.41b

.I.J 1

Types and Mathematical Representations of Solids £ 375

hows 01 of the possible ways to decompose the solid into its primitives. Using
he local coordinate systems of the primitives as shown in Fig. 6.4 and regardless
of the user interface or command syntax offered by a particular CAD/CAM system,

4 user can cons truct the C5G model using the following steps:
: B, =block positioned properly]
B, =block positioned properly
By = block

By =Bs moved properly in the X direction
C,= ¢ylinder positioned properly

C, = €, moved properly in the X direction
{:‘; = cylinder positioned properly

C;t = C, moved properly in the X direction |

* Primitives definitions

S, =Bt By
S, =8, w* € Construct left half
§3=5; V" C3
S, =B, W* By i
Sy = Cy ™ 54 ¢ Construct right half
S¢=Ca V¥ S5
5=5; ¥ 5

§ =85 u* 5¢ | Model

To save the above steps in a data structure, such a structure must preserve the
sequential order of the steps as well as the order of the boolean operations in any
step; that is, the left and right operands of a given operator. The ideal solution is a
digraph; call it a CSG graph. A CSG graph is a symbolic (unevaluated)
representation and is intimately related to the modeling steps used by the user. This
makes the CSG graph a very efficient data structure to define and edit a solid. The
CSG graph representing the above steps is shown in Fig. 6.42. Each of the
intermediate solids S, to S, is shown as the same node of its conesponding set

operation node. Notice that the steps starting from 8, and ending at § can be replaced
by

S=B, U* By U* C, U* Cy U* By U* By U™ C, U*

where set operations are evaluated from left to right unless otherwise indicated by
parenthesis, In this case the intermediate solids §, to §; do not exist and should be
removed from the CSG graph.

~ While a CSG graph has a succinct data structure to represent a solid model and
1s suitable for convenient and efficient editing of the model, it is not suitable to use
In geometric computation. This is mainly because of the cycles that the graph may
have which, in turn, means graph nodes may be shared to reflect congruence
I'ﬂ:_lli:]nshjps in the solid. This sharing means that useful information about the
solid such as the locations of shared nodes is not explicitly stored by the graph

376 CAD/CAM Theory and Practice

structure. Another reason the CSG graph is not efficient in COomputatione

storage of real expressions that may be used in defining a solid (e.g. .. :I,r;?! 'S g
use ¢ as a primitive parameter) as strings, that is, unevaluated, Therefore ., N
symbolic and more evaluated data structure is needed before involvip £ oom .. 3 IFEE
and application algorithms such as boundary evaluation and mass pmpm-?iétf“m“
solid. A CSG tree data structure is an ideal solution. It is a naturg] extension S0f 4
CSG graph and results from copying shared nodes and evaluating ajj 5tﬁ11g'-:lhhe
expressions). Some solid modelers such as PADL-2 has both daty ﬁtru-:tu;ﬂ{mm
these modelers, the CSG graph is the primary data structure and the CEGEI In
structure is derived from it whenever needed. Other modelers may have (he .[:;g:é

tree as their only data structure.

':‘3 <=3 F_-' /‘-’/
|
i) B,
—— s e) B 8
X . : //
=
{a) Typical solid (&) Primitives

Fig. 6.41 A typical solid and its Building Primitives

Fig. 6.42 CSG Graph of a typical solid

Types and Mathematical Representations of Solids g 377

A CSG tree is defined as an inverted ordered binary tree whose leaf nodes are
Pr—im.iti'-"JEH and interior nodes are regularized set operations. Figure 6.43 shows the
CSG tree i.ienxft:d I'mlm the CS5G graph shown in Fig. 6.42. Notice that this C5G
e can be derived dli‘:.‘i:il;p‘ from the modeling steps without having to create the
C5G graph. As a matter ﬂ!_ Fact, the tree can be created from the planning stralegy
shown in Fig. 6.41b. In Fig, 6.43, blocks &, 1o B,, cylinders C, o C, and union
operators are renamed as Py to Py, Psto Py and OP, to OP, respectively to emphasize
(he fact that they are cvuluu_t-::ci and stored explicitly compared to their counterparts
used in the CSG graph {Elg. 6.42). The CSG wee is shown with its full details
including arrows. In F”—’:ﬂlﬂ'ﬂ- the arrows are usually not shown, the leaf nodes are
just shown as primitives” nimes without circles surrounding them and a line extends
from the tree root up (o 1"'-1]'311‘15‘ the result of the final solid, Other styles of showing
1 CSG tree may E'Ele[:E primitive names by their sketches as well ag showing each
intermediate solid that results from an operator in the stream of the tree branches.

Fig. 6.43 C5G Tree of a Typical Solid

The total number of nodes in a CSG tree of a given solid is directly related to the
number of primitives the solid is decomposed to. The number of primitives decides
automatically the number of boolean operations required to construct the solid. If a
solid has n primitives, then there are (n — 1) boolean operations for a total of
(2n — 1) nodes in its CSG tree. The balanced distribution of these nodes in the tree
is a desired characteristic for various applications, especially those that use ray
casting such as shading and mass properties. A balanced tree is defined as a tree
whose left and right subtrees have almost an equal number of nodes; that 1s, the

- absolute value of the difference {n; — ng) is as minimal as possible where

np+ngp=2n-2 (6.59)
The root node is not included in this equation. n; and ng are the number of nodes of

the left and right subtrees respectively. A perfect tree 15 one whose | n;, — n, lis
equal to zero. A perfect tree results only if the number of primitives is even. For a

perfect ree, the following equation applies:

n; =np=n-—1 (6.60)

378 E CAD/CAM Theory and Practice

Each subtree has n/2 leaf nodes (pr‘nmitiw:&] and (n — 2)/2 interior nodes (hgq

operations). Figure 6.43 shows a perfect lree.
The creation of a halanced, ynbalanced, or a perfect CSG tree depends solely
on

the user and how he/she decomposes a solid into its primitives. The generaj
create balanced trees is 10 gtart to build the model from an almost central p: .h? lo
and branch out in two opposite directions Or Vice Versa; that is, start 17”:“‘[‘~']-Ir;r_u1
opposite positions and meet in a central one. The tree shown in Fig. 6.43 begj two
the central blocks B, and B, and branches oul. Another useful rule is that 5}'“1%!1“5 at
objects can lead to perfect trees if they are decomposed properly (see If.mc
614\ and 6.42) starting from the plane(s) of symmetry. Figure 6.44 Shﬂw:&'ﬁ-
unbalanced tree of the same solid shown in Fig. 6.41. This tree results if thE;J)
starts building the model from the left or right side. In this figure, primitives p ﬂfr
P correspond to'primitives Cj, C3, B,, B, + By, By C,4 and C; respectively, sh.;.:ﬁ,ﬂ
in Fig. 6.41b. In this tree 1, = 11 and ny = 1. Reorganizing an unbalanced m"
internally by a solid modeler is possible but is not practical to do.

Fig. 6.44 An LInbalanced CSG Tree

e a CSG tree, that is, pass through the ree
rder provides a way

tedina traversal 15
uch natural linear

Application algorithms must travers
and visit each of its nodes. Also traversing a tree in a certain o
of storing a data structure. The order in which the nodes are visi
clearly from the first node to the last one. However, there is no s

order for the nodes of a tree. Thus different orderings are possible for different
cases. There exist three main trave

rsal methods. The methods are all denned
recursively so that traversing a binary tree involves vigiting the root and traversing
its Jeft and right subtrees. The only difference among the methods

is the order 17
which these three operations are performed. The three methods are preorden, inorder

Types and Mathematical Representations of Solids

and postorder traversals. Sometimes
and postfix traversals. Three other me
ones by reversing the order of the trave

379

» these methods are referred to as prefix, infix
thods can be derived from these three main

rsal to give reverse pr a il
and reverse postorder traversals, = e preorder, reverse inorder

To traverse a tree in preorder,

3 we perform the f : A
order they are listed: B 1e following three operations in the

1. Visit the root.

2. Traverse the left subtree in preorder,

3. Traverse the right subtree in preorder.
In the reverse preorder method, the three o
of visiting the right subtree, then the le

shows the preorder and its reverse, traversal of th -
e L e tree sho
To traverse a tree in inorder (or symmetric or diecy: wn in Fig. 6.43.

1. Traverse the left subtree in
2. Visit the root,

3. Traverse the right subtree in inorder.
In the reverse inorder method, the tree is traversed

perations are reversed to

inorder,

give the sequence
ft subtree and then the root. Figure 6.45

by visiti i
then the root and then the left subtree (see Fig. 6.46) ¥ visiting the right subtree,

#

To traverse a tree in postorder:

1. Traverse the lefi subtree in postorder.

2. Traverse the right subtree in postorder.
3. Visit the root. -

In the reverse postorder method, the tree is traversed by visiting the root, then the
right subtree and then the left subtree, as shown in Fig. 6.47,
By campa.rip g Figs. 6-45 to 6-47, the reader can easily observe that the reverse
rder 1s a mirror image of the postorder, the reverse postorder is a mirror image
of the preorder and the reverse inorder is a mirror image of the inorder,

Which of the traversal methods shown in Figs. 6.45 to 6.47 is more suitable to
store a tree in a solid modeler? In arithmetic expressions, e.g., A + (8 + (), the
order of operations in an infix expression might require cumbersome parentheses
while a prefix form requires scanning the expression from right to left. Since most
algebraic expressions are read from left to right, postfix is a more natural choice.
In addition, if the concept of a stack (refer to Pascal textbooks) (last-in, first-out
behavior) is used in an algorithm 1o evaluate an expression, the postfix becomes
the most efficient form. These same rationales can be extended to binary trees.
Trees are derived from steps that are commands input by a user to create a solid.
These commands are scanned from left to right by the software and they might
contain parentheses. In addition, if stacks are used in algorithms that evaluate trees
(PADL.-2 does that), then the postorder is the ideal choice to traverse a tree. However,
the problem with the postorder iraversal, as shown in Fig. 6.47a, is that the root of
the tree has the highest node number. It is more natural to assign the root the number
1. Therefore, the reverse postorder seems the ideal traversal method of a CSG tree.
PADL-2 solid modeler uses such a method. In this method also the leftmost leaf
node of the tree has the highest node number in the tree.

380 £ CAD/CAM Theory and Practice

6.8.1 Basic Elements

Bounded solid primitives, or primitives for short, are the basic elements or building
blocks a CSG scheme utilizes to build a model. Primitives can be vicwed g
parametric solids which are denned by two sets of geometric data. The first seq i
called configuration parameters and the second is the rigid motion RATTIRIENS, T e
most common primitives are shown in Fig. {’:-4 Each ur‘n: of 1Irlu~c ‘pr_tmlm’ﬂs 15
defined by its configuration and rigiq motion Fulr‘mlm;t:rz, | {squTdTplE':“m
configuration parameters of a block primitive is the tripiet ;:r "‘;':WL “:"P 'I:;"f': W.h,
D) and its rigid motion is given by the locanon “.I IS :111?31“ i'rl;]“-’ﬂll.lﬂﬁ Eltrm E{che
coordinate system, say MCS or WCS, or by Exph?& 11g|m1:-:n |l-imil:‘|-.r::q T :::5 Hlon
and/or rotation). The configuration parameters ol the other p 5 are shown g

Fig. 6.4.

(b) Reverse preorder

Reverse Preorder Traversals of a Tree

Fig. 6.45 Preorder and

2

Types and Mathenmatical Representations of Solids

(#) Reveorse inorder

Fig. 6.46 Inorder and Reverse Inorder Traversals of a Tree

Each primitive, viewed as a parametric object, corresponds to family of parts.
Each given part of the family is called a primitive instance and corresponds to one
and only one value set of the primitive configuration parameters. Each primitive
has a valid configuration domain which is maintained by its solid modeler. User
input values of any primitive parameters are usually checked against its valid domain.
For example, a block primitive instance of the triplet (0, 0, 0) is not a valid instance
because the corresponding parameters are not within the valid domain of a block.

The choice of the two sets of the geometric data to define the size (via
configuration parameters) and the orientation (via rigid motion parameters) of a
primitive are based on the fact that any primitive can be described generically by
an eguation in its local coordinate system. The configuration parameters define it
such an equation completely. Utilizing the rigid motion parameters, the equation |

B

-

382 =
= CAD/CAM Theory and Practice

(k) Reverse postorder

7 Postorder and Reverse Postorder Tr
roperly intd another coordinate

h as equations, intersections,
tive local coordinate

Fig. 6.4 quersals of a Tree

and, therefore, the primitive

system. Therefore, primitives’ in
houndaries and others are usu ally expressed in t

can be transformed p

formation suc
erms of the primi

rdered triplets

Sfﬁ'lﬂﬂ_t XL Y.F.ZL'
Mathematically, each primitive is defined as a regular point set of ©
(x, v, z). For the primitives shown in Fig. 6.4, these point sets are given by:
Block: [{I._}?,I]:U{I{ W,{}-r:y-ﬂﬂundﬂ-::z-iﬂ} (6.61)
Cylinder: - [(x. 7 R +Y < R? and 0 <z < H} (6.62)
(o D +Y < (RIH)zP and 0 <2< H) (6.63)
(6.64)

Cone:
Sphere:

Tiypes and Mathematical Representations of Solids E 383
Wwedge: [(x, M2 0<x< W 0O0<y<H 0<z<D,
and yW 4+ xH = HW] : (6.65)
Torus: (o2 P4y + 22 —R2 —R2¥ <4RZ (R} -2%) (6.66)

compuring Eqgs. (6.61) 10 (6.66) with the half-space equations (6.51) to (6.55), it
.« obvious that each of the above bounded primitives is a combination of a finite
qumber of half-spaces. A block is the regularized union of six intersecting half-
spnces. Each of these half-spaces is given by one limit of the three inequalities of
Eq. (6.61). Similarly, a cylinder, cone and a wedge are the union of three, three and
five half-spaces respectively, Fig, 6,48 shows two-dimensional illustrations of the
nalf-spaces of each primitive shown in Fig. 6.4. Some half-spaces for the block
and wedge primitives are not shown in the figure for clarity purposes.

¥y,
Yi
b y<H
-1 ffffffffﬁfff; i
7 Z 7
L b ;]
o=<x [Ax= W - 4
Z Dl 7 Z
. P AT s PN
#a 0=y B L o]
ﬁ 114.}.1: = R ﬁ
Block Cylinder
¥y
Xy
x4+ p2 < [(RIH =)? x2 4y + 2 < R?
Cone Sphere -
Yi
A
¥
yW + xH < HW
D=x X
Ll IL
0=y
Wedge Torus [Eq. (76.66)]

Fig. 6.48 Half-spaces of Bounded Primitives

There are many representational alternatives for primitives. Some representations
are terse and contain little or no redundant data. These are called input
representations and are convenient for user input. Other representations are verbose,
contain lots of redundant data and are therefore convenient and efficient for

384 =
= CAD/CAM Theory and Practice

computational purpos i i
Lo liﬂll-_jp::‘lirt::':iﬁ arl;; cqllctl :rm;rnnt]-|:|:rr1:ﬁcnml:inns. Most CSG
one, While one of these ;11:3{|j:r1 E_*'W'I"‘ the ||l|_¢nml representation !'rmnllhj:i?mm
mainly for user convenience ii ::;:;;::}L I:: ::ldﬂ illl!ffﬁm'lw? ik m]“mu;li:pm
inpu S . Sually nas y one internal represent: [o,
mfu : :I]:::;: ;:?E:;h are ;:'{_)“:.j'ﬂﬂﬂd to it before :-:lum‘gc. Enn.n;id::l:. f.-:]’iiti::“ and aly
shown in Fig. 6.4. A user can specify its R, and K, or R, :':'?‘:ER o
> elf

input representations to create it

“’ 5 = =
hat are the redundant data of a primitive ihat a solid modeler caleulates |
£ ALES u"i[.'-l:l

on user [npm representation ane stores as its internal representaij
computational purposes? An internal representation of a pfilﬂiliwﬂl u—.rfl‘” o0 o
hm'_f:_mdumiunl. data would only store the primitive’s underlying |:".1L does noy
positioned and oriented properly in space, based on the user’s c:}nl%gtl:.] I“spaces
Any other data such as primitive faces ﬂd;;j':’;‘di:nd

]

rigid motion input paramelers.

lhnf might be needed to evaluate the result of, say, a boolean operation m

derived by explicitly calculating the proper intersections of the ““"Ef'!r"lﬁi:]ﬂ ?E
2 naif.

spaces. Such an approach would make application and computational algor

totally inefficient. Therefore, underlying curfaces, faces and edges, sur[ucf“"imm:a
and other data that are considered redundant are stored internally for each Fﬂ:,T 14la
:n addition to its half-spaces. In essence the internal representation of each p:ln'rnl'twt
is a CSG-rep plus a B-rep plus other information that is computationally u::-_:tlw
This “other . formation” could be engineering and design related in the ‘-:H.':;EL:::;I‘

implementing a new application 1nto golid modeling.
Let us now look closely into how faces, edges and other redundant data of 4

primitive are represented. Analogous o decomposing a solid into a combination of

primitives, each primitive can be decomposed into a collection of faces and edges
Each face is a finite regi face and each edge is a finiie

on of & closed orientable su
f an underlying curve. Therefore, a CSG scheme would have a set of
users to use an

4 internally would have a set of half-spaces, a sei
of closed orientable surfaces {huundﬂri-e:s of these half-spaces), a set of primitive
faces and a set of primitive edges. FIg. 6.49 shows such a data structure (intermal
representation) of a typical primitive. The pADL-2 solid modeler uses the structure
shown in this figure.

urfaces, primitive faces and primitive edges that a solid modeler
odeler CSG scheme utilizes,

The underlying s
tly related to the half-spaces the m
(6.51) to (6.55), then planar,

can provide are direc half-
lizes the natural quadrics given by Egs.
(called quadric surfaces) become

segment O
primitives for its

If a scheme ull _

cyltndrica], spheri cal, conical and toroidal surfaces

the underlying surfaces of the scheme or the modeler. 'I"ha&: surfaces are the

boundaries of their corresponding half-spaces and their point sets are gIven by:

Planar surface: pP={(x,»2)I= 0} (6.67)
i = P +y =R (6.68)

Cylinder surface: pP= {2 i }’2 2

Spherir:;-ﬂ surface: pP={(x 2 11 + }‘1 = }I (6.69)

Conical surface: P LB RIS [(RIH)z)") (6.70)

2y 4 - R R

Toroidal surface. pP={(xM 7). (x
_4R2(@RY-) (6.71)

Types and Mathematical Representations of Solids s 385
- Primitive Code L.'i'ql.?r List of List of
solid number e half-spaces cdpes
fnces

WD T

Primitive Code Containing List of List of

fices number surface half-spaces cdges

- !‘r LR '\ﬁ

To

Half-space/ Code Configuration | Rigid motion
surface numbper paramelers | paramelers
Edge/ Code Configuration | Rigid motion
curve segment number paramelers parameiers

Fig. 6.49 Data Structure of a Typical Primitive Solid

These are infinite surfaces whose intersections yield infinite curves. These curves
are usually classified against given primitives using set membership classification
to determine which curve segments lie within these primitives and consequently
within the solid.

Primitive faces are faces of primitives selected such that the boundary of any
primitive may be represented as the union of a finite number of these faces after
being positioned properly in space. The sufficient set of primitive faces to represent
the boundary of any of the primitives shown in Fig. 6.4 consists of plate, tmplate,
disc, cylindrical, spherical, conical and toroidal primitive faces. The equations of
these primitive faces (Pfaces for short) are given by:

Plate Pface: F={(x,v,2:0=x<W, 0<y<Hand z=0] (6.72)
Triplate Pface: F={(x,v,2:0<x<W,0<y<H and

| yW+xH < HW} (6.73)
Disc Pface: F= {2+ <R*and z=0] (6.74)
Cylindrical Pface: F=(x, y 2 X+ _1.:2 =R*and 0 <z < H) (6.75)
Spherical Place: F={(x,y,2: X+ +7 =R (6.76)

Visual Realism = 517

._.apvenience associated with the partially hid i
ey command, which s cxpected to be use, afects he ente
gat e 1y in all views: thatis, ithas a global effect on the < ntiey, ot Tust & Tocal
Fgﬂﬂ o a given view. '_n‘ﬂf' w:}l.llld_f{}n‘:f: the user to copy the pani:fﬂly ’:.!.i::ld:nc;;‘:::
':ﬂ.udel entity) first 1.J:l'h1]!? theSdmﬂmg mode is on (to obtain a drafting entity) and
El!:; L totrim the resulting line. Some CAD/CAM systems may have a special solution
i pblem.

o m'iﬁ; the manual model clean-up as described above is applicable to wirefram

ol els, its extension to surface models becomes practically useless. In :-mmz
me ances, the surface may have to be replaced by its boundaries (wireframe entities)
ins™ the clean-up process bﬂﬂ‘-“&_ S“"'fﬂ'_ﬁﬂ manual clean-up is usnally not common
bd":‘ usﬂﬂ surfaces are seldom used in engmeleﬁng drawings. Automatic hidden line
e hidden curface removal algorithms, discussed in the following sections, are

Eﬂll}' nsed ins tead.

e e

53 S FDDEN LINEREMOVAL 0

gince the early development of computer graphics, there is always a demand for
mages (of object s) enhanced by removing the hidden parts that would not be seen
:Fobjects Were constru cged from opague material in real life. Edges and surfaces of
agiven object may be hidden (invisible) or visible in a given image depending on
the viewing direction. The determination of hidden edges and surfaces is considered
one of the most challenging problems in computer graphics. Its solution typically
demands large amounts of computer time and memory space. Techniques to reduce
hese demands and improve efficiencies of related algorithms exist and are discussed

here.
The solution to the problem of removing hidden edges and surfaces draws on

various concepts from computing, mainly sorting and geometric modeling, mainly
projection and intersection. This problem can also be viewed as a visibility problem.
Therefore, a clear understanding of it and its solution is useful and can be extended
1o solve relevant engineering problems. Con sider, for example, the vision and path
planning problems in robotics applications. In the vision problem, the camera
location and orientation provide the viewing direction which, in turn, can be used
o determine the hidden edges and surfaces of objects encountered in the robot
working environment. In the path planning problem, the knowledge of when a
giten surface changes from visible to hidden (via finding silhouette edges and
curves as seen later in this section) can be utilized to find the minimum path of the
tohot end effector. Points on the surface where its status changes from visible to
invisible or vice versa can be considered as critical points which the path planning
algorithm can use as an input. Another example is the display of finite element
meshes where the hidden elements are removed. In this case, each elementis Uﬂﬂtﬂd
a5 a planar polygon and the collection of elements that forms the meshed Dh]!:::c:t,
f{ﬂm a finite element point of view, forms a polyhedron from a computer graphics
"ViEwpoint. e ¢
A wide variety of hidden line and hidden surface removing (visibility) algorithms

I8 in existence today. The development of these algorithms ;< influenced by the

s1g ‘= CAD/CAM Theory and Practice
= : ort {whethfzr they are vector or Taster)
jos lsplay U7 or geumctric modeling they operate on (Wirefrap,
strucrusﬂ:mc algorithms utilize paljallt?l, over the traditiong
.So . - The formalization ar:jcl generalizaig,
serial, processing o SP€ aired if one attempts to design and byj
: and are req . ild
of these aigﬂnt‘:hhmaid N ?cflitpguﬂ : ne and h1dde:1 r;surj]a;:; Lﬂ:mvﬂl’ which
. 1 '8 = I ny @ a ‘i.-’l" o
?ﬁllal{egnuﬁt:ﬂ to a single algorithm. ’ ;]]:__11':'.&"-. them to be mi‘;;:{ﬂjr;::e
; ' i lations 10 a
different algorithmic formu
o remove hidden parts to creg,

a genﬂral‘izcd scheme. A apof objects [hjdd = bl ddepipar
- salistic i spally classified 10tO | en line laden surface

iljlglm-1 m\:].'l.ilﬂ the latter supports Tastet displays. Hidden line algorithms can, of
P l;ntt~E=1"5i:.“3 = with raster diSpIE}fS becausc they Sup]TDl:l line drawmgs, Hnw‘-“'—"ﬂ'&n
?1?::1‘;?51111‘-.&13'3 aleorithms are not applicable to vector d}splay& From a geometrig
modeling point of view, this classification 15 hmhl ':D:;]fus.u:'g a“dl.d E-;Twmg,_ Hidden
z an (as the name may imp y) that it 15 app 1c£‘: e to wireframe
line removal does not e (val is not only applicable to surface

. ad . hidden surface remo
models only. Similarly hidden parts from an image

i Ve
models. As a matter of fact, algorithms to remo . i
cannot be applied o wireframe or surface models directly. They require ap

unambiguous data structure that represents an object as orientable faces. This means
that each face has a surface tent direction (say positive if face

normal with a consis _
edges are input in a counterclockwise direction): that is, polyhedral objects are
represented-by orientable flat polygons. Th

ese polygons can be obtained from g
wireframe; surface, or solid model, Users would have to input extra information to
identify faces and orientation for

wireframes or orientation for surface models.
Solid models provide such information automatically. In spite of the above
have hidden line, hidden surface and hidden solid

misleading classification, we
removal sections in this chapter. This is merely done to reflect the historical order

of the development of the related al gorithms.
Hidden line and hidden surface algorithms have been classified as object-space

methods, image-space methods, or a combination of both (hybrid methods). Image-
space algorithms can be further divided into raster and vector algorithms. The
raster algorithms use a pixel-matrix representation of the image and the vector
algorithms use endpoint coordinates of line segments in representing the image.
An object-space algorithm utilizes the spatial and geometrical relationships among
the objects in the scene to determine hidden and visible parts of these objects. An
g:taaf[;]?[?:thmgﬂrﬂ]?m‘ on thﬂﬁ nt_hﬂr hand, concentrates on the final image to
e EE z;ﬂz::ﬂﬂs say, within each raster pixel in the case of raster displays.
ks Te i G e gorithms use raster image-space methods while most hidden
o n:: [l:. JecbsFaEE methods.
it dife r!;ﬁ : cﬂh‘: es (U?J*‘-"_‘-‘I'SPHC}?— and image-space) to achieve visual realism
image-space algﬂriiliﬁmn“g:m Chject pace algocithing are moe Ao o
lersacticns) sk s. The former perform geometric calculations (such 2
" 3) using the floating-point precision of th while
he latter perform calculations with ace e e
uracy equal to the resolution of the display

as they 5UPP

to a form thata

Visual Realismm = 519

»d to present them. Therefore, enlargement of an object-space image does
41ee pus e its guality of display as does the enlargement of an in :

. lage-space image,

Jeg™® xity of the scene increases (large numbers of objects i P h g:z
! ﬁcﬂmpl,ﬂ :me grows faster for object-space algori eI S soenc):
ﬁ.5d1 gtation 81 =) algorithms than for image-

,:;ﬂl'l'-' 4 5.
the ﬂlgﬂnﬂ'llﬂ
spﬂ”s visib ility of Object Views

- f objects of a scene depends on the locati s

_-pility of PArts @ S € location of the viewin

\Fli:?:ié:::ing directiomn, the t},*plﬂ of Ermﬂﬂlmn mrthng[mﬂ] OT perspective) :mﬁ

ey~ i or the distance ﬁf}m various faces of various objects in the scene to the
o ive. The hidden line removal L:i' perspective views (see Fig. B.21)is a

i Emﬁlﬁx problem 10 sdulvf:_. Manyl lines nf"::ight (rays) from the viewing eye

fairlY * Eﬂﬂﬁidﬂmd and their points of intersection with objects’ faces have to be

st

ol Jated. The complexity of tl}e prnblﬂ'm is considerably reduced if orthographic
calc : Jtilized because no ntersections would be necessary. Therefore, it is
yie .

ctice to apply the perspective transformation given by Eq. (8.116) to
""’m: of the points in the scene and then apply orthographic hidden line visibility
the sﬂ:mms to the resulting .{transfumted} set of points. This is equivalent to saying
+ the orthoET aphic viewing of the t‘"ﬂ nsformed (perspective) objects is identical
thet spective viewing of the original (untransformed) objects. Hence, only
o 1 raphic hidden line algorithms are discussed in this book. g
mﬂ,:.?] = depth ;;m:nl_;n?_risﬂn is the C'F;".'I']lri?!l criterion utilized by hidden line algorithms
jpdetermine visﬂ_:ul:t}'. Depth comparisons are typically done after the proper view
ransformation given.by Eqs (8.105) and (8.116) for orthographic and perspective
ijecﬁuus rwpﬂctivel}',LWhllE these two equations destroy the depth information
(the.z, coordinate of projected points) to generate views, such information can be
saved [by replacing the element 73, of [T] in both equations by 1 instead of the
current 0; for Egs. (8.107) and (8.108), set 1, and 15, respectively to 1] for depth
isons by hidden line algorithms.

The depth comparison determines if a projected point P, (x;,, ¥;,) in a given
view obscures another point P, (x,,, ¥-,). This is equivalent to determining if the
two original corresponding points P, and P, lie on the same projector as shown in
Fig. 9.3 (the MCS and VCS are shown as the XYZ and the X, Y, Z, systems

ively). For orthographic projections, projectors are parallel. Therefore, two
points P; and P, are on the same projector if x;, = x,, and y, = ¥,,. If they are, a
comparison of z;, and z,,decides which point is closer to the viewing eye. Utilizing
the VCS shown in Figs. 8.19 and 9.3, the point with the larger z, coordinate lies
closer to the viewer. Applying this depth comparison to points P,, P, and P; of Fig.
9.3 shows that point P, obscures P, (i.e., P, is visible and P; is hidden) and Pj is
visible. If the depth comparison is to be performed utilizing the ECS (see
Fig. 8-21), the transformation matrix given by Eq. (8.113) must be applied to the
projected points before the comparison. This simply reverses the comparison to
say that points with smaller z, coordinates lie closer to the viewer.

520 = CAD/CAM Theery and Practice ' ‘ﬂ
.

P"-' 1:.'."'llF-H Miu)
E .-'- P2y {xay, F¥aud
-

f"z [—IZHJ’I.II:I}'\HM ","-P3I'.I {#JU:}'EI-L.-} 4
Pyxnya) =

P35 (x3, ¥3. 23)

Projectors 7/ SR
/:r:nwing direction

Z :
Fig. 9.3 Depth Comparison for Orthographic Projection
9.3.2 Visibility Techniques
If the depth c@mpaﬂsmn criterion is used solely with no other enhance

ments, the
number of comparisons grows rapidly [for n points, (g) tests are required] whigh

leads to difficulties storing and managing the results by the corresponding hidden

line algorithm. As a result, the algorithm might be slow in calculating the final
image. Various visibility techniques exist to alleviate these problems, In general
these techniques attempt to establish relationships among polygons and edges ij;
the viewing plane. The techniques normally check for overlapping of pairs of
polygons (sometimes referred to as lateral comparisons) in the viewin £ plane (the
screen). If overlapping occurs, depth comparisons are used to determine if part of

all of one polygon is hidden by another. Both the lateral and depth comparisons are
performed in the VCS.

9.3.2.1 Minimax Test ' i
This test (also called the overlap or bounding box test) checks if two polygons

=
overlap. The test provides a quick method to determine if two polygons do not
overlap. It surrounds each polygon with a box by finding its extents (minimum and
maximum x and y coordinates) and then checks for the intersection for any (%0
boxes in both the X and Y directions. If two boxes do not intersect, theif
corresponding polygons do not overlap (see Fig. 9.4). In such a case, no furthef
testing of the edges of the polygons is required.

If the minimax test fails (two boxes intersect), the two polygons may or may e
overlap, as shown in Fig. 9.4. Each edge of one polygon is compared against all the
edges of the other polygon to detect intersections. The minimax test can be applied
first to any two edges to speed up this process.

Visual Realjsm = 521
Ye

P

-
1

-

e i |

-

=

R

=

T e

|

Xy
Fig. 9.4 Minimax Tests for typical Polygons and Edges

Ihe minimax test can be applied in the Z direction to check if there is no overlap
.1 this direction. In all tests, finding the extents themselves is the most eritical part
gftﬁn test. Typic:ﬂlhn this can be achieved by iterating through the list of vertex
coordinates of each polygon and recording the largest and the smallest values for
ﬂ'-ﬂ':h coordinate. . ;

9322 Containment Test

sij&m hidden line algorithms depend on whether a polygon surrounds a point or
another polygon. The containment test checks whether a given point lies inside a
given polygon or polyhedron. There are three methods to compute containment or
_ surroundedness. For aconvex polygon, one can substitute the x, and y coordinates

of the point into the line equation of each edge. If all substitutions result in the
same sign, the point is on the same side of each edge and is therefore surrounded.
This test requires that the signs of the coefficients of the line equations be chosen
correctly.

For nonconvex polygons, two other methods can be used. In the first method,
we draw a line from the point under testing to infinity as shown in Fig. 9.5a. The
semi-infinite line is intersected with the polygon edges. If the intersection count 15
even, the point is outside the polygon (P, in Fig. 9.5a). If it is odd, the point is
inside (P, in the figure). If one of the polygon edges lies on the semi-infinite line, a

singular case arises which needs special treatment to guarantes the consistency of
the results, o

522 CAD/CAM Theory and Practice

¥

3

Iiven count of £
! point not surrounded

Ddd count of § ——
point surrounded

! (£} Angle method
() Intersection method

Fig. 9.5 Containment Test for Noticonvex Polygons

The second method for nonconvex polygons (Fig. 9.55) computeg Bk
angles subtended by each of the nricn_lr:d edges as seen from the teg p“inT Of {h,
P,). If the sum is zero, the point is outside the polygon. I t['m SUM is 2 770p 2{PI o
point is inside. The minus sign reflects whether the vertices of (he P“]ng;: the

ordered in a clockwise direction instead of counterclockwise,

9.3.2.3 Surface Test

- This test (also called the back face or depth test) provides an efficient Methog 4
implementing the depth comparison. Figure _9.6-;1 shows that face g Obscurps or
of face A. In this case the equation of a plane is used to perform the tess, The P]ﬁ“ﬁ

equation is given by

= L ax, + by, +cz,+d=0, 9.1)
If a given point (x,, ¥,. z,) is not on the plane, the sign of the left-hand side of the
above equation is positive if the point lies on one side of the plane and Negative jf
it lies on the other side. The equation coefficients a, b, c and d can be arranged ;
that a positive value indicates a point outside the plane. The plane equatigy -:az
also be used to compute the depth z, of a face at a given point (x,, y). The depths of
two faces can, therefore, be computed at given points to decide which one jg closer
to the viewing eve. :

Another important use of the plane equation in hidden line removal is achieved
by using the normal vector to the plane. The first three coefficients a, b and ¢ of
Eqg. (9.1) represent the normal to the plane and the vector [a, b, ¢, d] represents the
homogeneous coordinates of this normal. The coefficient d is found by knowinga
point on the plane. In Chap. 5, we have discussed the various ways of finding the
plane equation. Figure 9.65 shows how the normal to a face can be used to decide
its visibility. The basic idea of the test (Fig. 9.6&) is that faces whose outward
normal vector points toward the viewing eye are visible (face F,) while others are
invisible (face F,). This test is implemented by calculating the dot product of the
normal vector N and the line-of-sight vector S (Fig. 9.6b) as

N-5=INlISicos & - , (9.2]

If, in this equation, we assume that N points away from the solid and #is measured
from N to S, the dot product is positive when N points toward the viewing eye of
when the face and its edges are visible. The right-hand side of Eq. (9.2) gives the
component of N along the direction of 8. For orthographic projection, this direction

: Visual Realisyy = 523
ith the Z, ax1s. Thus the surface tegt can be -
iﬂ“idﬁsﬂnﬂl has a positive component in the 7 State(

: a5 follows, Face
: Irectio R « DACes

0 nar
4] has a negative Z, component gre not visible ']? o oole and those

o

ﬂhﬂ5ﬂ ot solve the hidden line problem excep

. € surface test b
iﬁﬂf can onvex Pﬁl,}.rh::dra: the test may fai] for perspe ﬂt%vﬂe Eﬂn?rexlpul?rhedm_
gef Ful}’hﬂdmn exists in the scene, Projection if more

one
et

. N,

20 i

74 N i

C “Line of sight
- X,
Zy
o (k) Utilizing normals to planes:- - | :
Fig. 9.6 Surface Test e

9324 - Computing Silhouettes

A set of edges that separates visible faces from invisible faces of an object with
respect to a given viewing direction is called silhouette edges (or silhouettes). The
signs of the Z, components of normal vectors of the object faces can be utilized to
determine the silhouette. An edge that is part of the silhouette is characterized as
the intersection of one visible face and one invisible face. An edge that is the
intersection of two visible faces is visible, but does not contribute to the silhouette.

The intersection of two invisible faces produces an invisible edge. Figure 9.7a
shows the silhouette of a cube.

524 = CAD/CAM Theory and Practice

Silhoueciic

{a) Silhouette edges

- N
¥ N l! M3
N ey
/ R o ..‘13'::
zﬁ']"r-p Nﬁ 3
F A S——
”3 Xb
= f
Hz-'- . Ny Ni-._ P N
My
L"' Fo l
2 NE - X ;?r. T"'l'|
o
L

(#) Determining silhouette edges

Fig. 9.7 Silhouette Edges of a Polyhedral Object

Figure 9.75 shows how to compute the silhouette edges. One cube is oriented 3
an angle with the axes of the VCS and the other is parallel to the axes. In the firs
case, the Z, component of each normal is calculated (shown dashed in the figure)
The edges between faces F| and F,, F| and F, I'; and Fj, Fyand Fg, Fyand Fyand
F, and F, are silhouette edges according to the above criterion. If a normal doss
not have a Z, component, as in the second case of Fig. 9.75, additional informaica
is needed to compute the silhouette. This case implies that the corresponding face
is parallel to the Z, axis and either the X, or ¥, axis and perpendicular to the remairing
axis. For example, face F, is parallel to both the Z, and ¥, axes and perpendicular
to the X,, axis. Therefore, the face normal is parallel to one of the VCS axes, If thi
normal points in the positive direction of the axis, the face is visible. Face F, i
visible and F, is not. Similarly; face F5 is visible while F is not.

Determining silhouette curves for curved surfaces follows a simil
but is more involved. The silhouette curve of a surface is a curve on
along which the Z, component of the surface normal 1s zero, as shown

ar appmﬂth.
the surface

ol Visual Realism = 525

: rve, the equation of the Z com
ﬂbmi“j ;.E]”?EE;I to zero and solved for Ihu andpcu:n f’ﬁ:i: fnther,;ur;m.:ﬂ normal
(Ea i;icnt because the resulting equation is difficult to EER’E:d ;:’Larlz E:EJ&IF
v e equation isa quintic polynomial in 1 and v. Other more efficient rn::ﬂ-.::u:f
; ul'f"f:i];hlﬁ in the literature and are not discussed here., ;
a

Nke =0

Yy

Silhouette curve

Wisible

Ju

o
X

2y
Fig. 9.8 Silhouette Curve of a Curved Surface

9,3.2.5 Edge Intersections

Y

All the visibility techniques discussed thus far cannot determine which parts are
nidden and which are visible for partially hidden edges. To accomplish this, hidden
line algorithms first calculate edge intersections in two-dimensions, that is, in the
X, ¥, plane of the VCS. These intersections are used to determine edge visibility.
Consider the edge AB and the face F shown in Fig. 9.9, The edges of the face F are
directed in a counter- clockwise direction. Let us consider the intersection [between
AB and edge CD of face F. The visibility of AB with respect to F can fall into one
of three cases: fully visible, I indicates the disappearance of AB, or] indicates the
appearance of AB. In the first case, the depths z, at point [are computed and
compared. If it 1s considered a point on F, its x, and y, coordinates are substituted
into the plane equation to find z,. If itis a point on AB, the line equation is used
instead to find the other depth. If the depth of the line is larger (we are dealing with
a right-handed VCS) than the depth of the face, the line AB is fully visible
(Fig. 9.9a). Otherwise, if the directed edge CD subtends a clockwise angle #about
A (Fig. 9.9b), the edge disappears. If, on the other hand, the edge subtends a counter
clockwise angle @ about A (Fig. 9.9¢), the edge appears. Notice that if the face
edges are directed clockwise, the angle criterion reverses. The angle criterion is
sometimes referred to as the vorticity of edge CD with respect to point A.

526 CAD/CAM 1heory died FIRLiits

3.

P [{c) €D marks the appearance of
ﬂLﬁ;ﬁﬂﬂk&ﬁféﬁﬂmm“ 9 partially hidden edge 48

Fig. 9.9 Computing Visibility of Edges

9.3.2.6 Segment Comparisons

This class of techniques is used to solve the hidden surface problem in the image
(raster) space. It is covered in this section as another visibility technique, Tpe
techniques covered here are applicable to hidden surface and hidden solid algorithm
as well. As discussed in Chap. 2, scan lines are arranged on a display screen frop,
top to bottom, left to right. Therefore, instead of computing the whole correct ima oe
at once, it can be computed scan line by scan line, that is, in segments and displayed
in the same order as the scan lines. Compautationally, the plane of the scan line
defines segments where it intersects faces in the image (see Fig. 9,10). Computing
the correct image for one scan line is considerably simpler. 3

The segment comparisons are performed in the X Z,, plane (Fig. 9.10). The
scan line is divided into spans (dashed lines shown in the bottom of Fig. 9.10
define the bounds of the spans). The visibility is determined within each span by
comparing the depths of the edge segments that lie within the span. Plane equations
are used to compute these depths. Segments with maximum depth are visible
throughout the span.

The strategy to divide a scan line into spans is a distinctive feature of any hidden
surface algorithm. One obvious strategy is to divide the scan line at each endpoint
of each edge segment (lines A, B, C and D in Fig. 9.10). A better strategy is to
choose fewer spans. In Fig. 9.10, it is optimum to divide the scan line via line C

into two spans only.

9.3.2.7 Homogeneity Test

Th_e depth test dﬂsr:r? bed in Sec. 9.3.2.3 is concerned with comparing the depths of
point sets (single points) to determine visibility. Computing homogeneity of point
sets 1s another test to determine visibility. The notion of neighborhood (discussed

Visug! R

he used to determine

: :}m!L]St ’ 1ne hU“‘!{J eTies

0 chap pere by N(P), in a data set ig a]] Pngin?:;;}r' hThe nej
-a 1 \.11 1 t

dgnﬂ’:fﬂ for tWO dimensional point sets) around it

ealism = 57

© Setlying inside a Sppnm[P,

here (or

Yo

Plane of scan line

Visibility of hatched areas
are not computed yet

Fig. .10 Compuiing Visibility using Scan Lines

Three types ﬂt: points can be identified based on computing homogeneity:
hﬂmggenenusly _vmibla, homogeneously invisible and inhomogeneously visible. If
i nﬂighhﬂrhuﬂd of a point F can be bijectively projected onto a neighborhood of
the projection -of the point, then the neighborhood of P is visible or invisible and
p is called homogeneously visible or invisible respectively. Otherwise, P is
inhomogeneously visible or invisible. If we denote the projection of P by pr{F), P
is homogeneously visible or invisible if priN(FP)) = N(pr(P)) and inhomogeneously

visible or invisible if priN(P)) # N(pr(P)). Using this test, inner points of scenes

are homogeneously visible (covering) or invisible (hidden) and contour (edge) points

are inhomogeneously visible. Figure 9.11 shows an_examFle. N(P. F) denotes the
neighborhood of a point P that belongs to face F. _It is obvious that contour points
(P,) are inhomogeneou sly visible (covering) and inner points arc homogeneously
visible (P, on face F,) or invisible (F; on fﬂﬂ_‘-ﬁ File ; d'ta He
Homogeneity is important for both covering f-‘-mi hHi:m,g{,. No pc;mt niz ni: ﬁ:: =
tested against any homo geneously visible (covering) point am}d no mm;a:p e ;mz-
hidden point needs to be rested against any other Pt :-;mcﬂll ? nvisihlﬂ point
homogeneously invisible in both cases. MaoreoVver, homogeneously ImV1S

Visual Realism 537

T e Hr{t Slectin discussed in this section are sample algorithms
o enable understanding of the basic nature of the hidden line removal problem.
E],-he area-oriented algorithm is more efficient th

: an the priority algorithm because it
pardly involves any unnecessary edge/face intersection.

g.3.7 Hidden Line Removal for Curved Surfaces

The hidden line algorithms described thus far are a
with flat faces (planar polygons or surfaces). Fg
extendable to curved polyhedra by approximatin
u—v grid offered by parametric surface representation (Chap. 5) offers such &an
apprunimatiﬂn- This grid can be utilized to create a “erid surface” consisting of

straight-edged regions (see Fig. 9.16) by approximating the u—v grid curves by
line segments.

pplicable to polyhedral objects
rtunately, these algorithms are
£ them by planar polygons. The

Curved surface
Grid surface

/ e

Fig. 916 Grid Surface Approximation of a Curved Surface

The overlay hidden line algorithm mentioned in Sec. 9.3.6 is suitable for curved
surfaces. The algorithm begins by calculating the w—v grid using the surface
equation. It then creates the grid surface with linear edges. Various criteria discussed
previously can be utilized to determine the visibility of the grid surface.

There is no best hidden line algorithm. Many algorithms exist and some are
more efficient and faster in renderi ngimages than others for certain applications.

rmware and parallel-processing computations of hidden line algorithms make it

Possible to render images in real time. This adds to the difficulty of deciding on a
best algorithm. '

)

The hidden surface removal and hidden line removal are identically one problem.
h'_ltust of the concepts and algorithms described in Sec. 9.3 are applicable here and
Vice versa, While we limited ourselves to object-space algorithms for hidden line
*®moval, we discuss image-space algorithms only for hidden surface removal. A
Wide variety of these al gorithms exist. They include the z-buffer algorithm, Watkin’s

W;——-

538 CAD/CAM Theory and Practice

algorithm, Warnock’s algorithm and Painter’s algorithm. Watkin’s algorithm i
based on scan-line coherence while Warnock’s algorithm 15 an area-coherence
algorithm. Painter’s algorithm is a priority al {;,::lnthm as dﬂacnhfzd in the previmus
section for raster displays. Two gample algorithims are covered in this section,

9.4.1 The z-Buffer Algorithm

This is also known as the depth-buffer algorithm. In addit_iﬂn lo the frame (refresh)
buffer (see Chap. 2), this algorithm requires a 2 buffer in which z values can be
sorted for each pixel. The z buffer is initialized to the smallest z value, while the
frame buffer is initialized to the background pixel value. Both the frame and ;
buffers are indexed by pixel coordinates (x, ¥). These coordinates are actually
sereen coordinates. The -_buffer algorithm works as follows. For each polyzon in
the scene, find all the pixels (x.¥) that lie inside or on Fhﬂ- boundaries of the polygon
when projected onto the screen. For each of these pr:-:_ﬂla, calculate the: depm zof
the polygon at (x, y)- If z = depth (x,), the polygon is closer to thv? viewing eye
than others already stored in the pixel. In this case, the z buffer is updated by
setting the depth (x, y) 10 2. Similarly, the intensity of the frame buffer location
corresponding to the pixel 1s updated to the intensity of the polygon at (x, y). After
all the polygons have been proces sed, the frame buffer contains the solution.

9.4.2 Warnock’s Algorithm . '

This is one of the first area-coherence algorithms. Essentially, this algorithm solves _
the hidden surface problem by recursively subdividing the image into sub-images. |
It first attemnpts to solve the problem for a window that covers the entire image.
Simple cases such as one polygon in the window or none at all are easily solved. If
polygons overlap, the al gorithm tries to analyze the, relationship between the
polygons and generates the display for the window.

If the algorithm cannot decide easily, it subdivides the window into four smaller
windows and applies the same solution technique to every window. If one of the
four windows is still complex, it is further subdivided into four smaller windows.
The recursion terminates if the hidden surface problem can be solved for all the

- windows or if the window becomes as small as a single pixel on the screen. In this

case. the intensity of the pixel is chosen equal to the polygon visible in the pixel.
The subdivision process results in a window tree.

Figure 9.17 shows the application of Wamock’s algorithm to the scene shown
in Fig. 9.13a. One would devise a rule that any window is recursively subdivided
unless it contains two polygons. In such a case, comparing the z depth of the polygons
determines which one hides the other.

While the subdivision of the original window is governed by the com plexity of
the scene in Fig. 9.17, the subdivision of any window into four equal windows
makes the algorithm inefficient. A more efficient way would be to subdivide 2

window according to the complexity of the scene in the window. This is equivalent
to subdividing a window into four unequal subwindows.

Visual Realism 539

i . E—

e s

— e T S ———

o

I

I

r
gl

I

L

AR R | e] AR |
i I I | ' |
L i | L | '
I 1 /’ | | T 7 |
| | 1 I ' i i
] | Ll |

i ; | i B e 74 s et s |

Sk o S R i R L8 £ |

i ; | I 1

i | | |

1 SR | 1 |

Fig. 917 Warnock's Algorithm

AT

9.5 E HIDD

The hidden solid removal problem involves the display of solid models with hidden
lines or surfaces removed. Due to the completeness and unambiguity of solid models
as discussed in Chap. 6, the hidden solid removal is done fully automatically.
Therefore, commands available on CAD/CAM systems for hidden solid removal,
say a “hide solid” command, require minimum vser input. In fact, all that is needed
1o execute the commmand is that the user identifies the solid to be hidden by digitizing
it. The data structure of a solid model (see Fig. 6.29) has all the necessary information
to solve the hidden line or hidden surface problem. All the algorithms discussed in
Secs. 9.3 and 9.4 are applicable to hidden solid removal of B-rep models. Selected
algorithms such as the z-buffer have been extended to CSG models.

For dijspl_aj.fin ¢ CSG models, both the visibility problem and the problem of
combining the primitive solids into one composite model have to be solved. There
are three approaches to display CSG models. The first approach converts the CSG
model into a boundary model that can be rendered with the standard hidden surface
algorithms. The second approach utilizes a spatial subdivision strategy. To simplify
the combinatorial problems, the CSG tree (half-spaces) is pruned simultaneously
with the subdivision. This subdivision reduces the CSG evaluation to a simple
preprocessing before the half-spaces are processed with standard rendering
techniques. ; : . -

The third approach uses a CSG hidden surface algonthm which CDmF’mEﬁ.mE
CSG evaluation with the hidden surface removal on the basis of ray classification.

R —

540 = CAD/CAM Theory and Practice

The CSG ray-tracing and scanjlim_a algi::-rithrns.u.nhzef [I:]ig approach. The
attractiveness of the approach l}cs in the conversion of the complex three.
dimensional solid/solid intersection problem into a ﬂ“f—“ﬂ*mﬁﬂsmnal ray/solig
intersection calculation. Due to its PDPU]@W and generality, the rémainder of this
section covers in more detail the ray-tracing (also called ray-casting) algor;

thm,
9.5.1 Ray-Tracing Algorithm

The virtue of ray tracing is its simplicity, reliability-and extendability. The 1,
complicated numerical problem of lihE ﬂlgf‘-'_n’-’hm 2 finding the points a Which
lines (rays) intersect surfaces. Tllﬁ':I‘EfDI:E‘H. WIF]E varl ety Df_ﬂ'-ll'fﬁﬂﬂs ?nd Primitives
can be covered. Ray tracing has been utilized in vi _:-:ual reﬂll_:irn of solids to Zenerate
line drawings with hidden solids removed, animation of solids and shaded pictures,
It has also been utilized in solid analysis, mainly calculating mass properties
The idea of ray tracing originated in the e.arrly 1970s h}', MAGI (Mathemagi,
Applications Group, Inc.) to generate shaded pictures of solids. To generate these
pictures, the photographic process is simulated In reverse. For each pixel in the
screen, a light ray is cast through it into the scene to identify the visible surfaee,
The first surface intersected by the ray, found by “tracing” along it, is the visible
one. At the ray/surface intersection point, the surface normal is computed angd
knowing the position of the light source, the brightness of the pixel can be calculated,
Ray tracing is considered a brute force method for solving problems. The hasic
(straightforward) ray-tracing algorithm is very simple, but yet slow. The CPU usage
of the algorithm increases with the complexity of the scene under consideration,
Various alterations and refinements have been added to the algorithm to improve
its efficiency. Moreover, the algorithm has been implemented into hardware (ray-
tracing firmware) to' speed its execution. In this book, we present the basic algorithm
and some obvious refinements. More detailed work can be found in the bibliography
at the end of the chapter.

9.5.1.1 Basics

The geometric reasoning of tray tracing stems.from light rays and camera models.
The geometry of a simple camera model is analogous to that of projection of
geometric models. Referring to Fig. 8.18, the center of projection, projectors and
the projection plane represent the focal point, light rays and the screen of the camera
model respectively. For convenience, we assume that the camera model uses the

VS as described in Chap. 8 and shown in Figs. 8.19 and 8.21. For éach pixel of
the screen, a straight light ra

¥ passes through it and connects the focal point with
the scene. .

When the focal length, the distance between the focal point and screen, is infinite,
parallel views result (Fig. 8.19) and all 1

and perpendicular to the screen (the X,

ight rays becomes parallel to the Z, axis
of a camera model as

_ ¥y plane). Figure 9. 18 shows the geometry
described here. The X¥Z coordinate system shown is the
same as the VCS. We have dropped the subscr

* ipt v for simplicity. The origin of the
XYZ system is taken to be the center of the screen.

e R E-t

I..:"_I' d !

Visual Realism

541

-.__H___-H H{;E’:‘nmnn
/“;H?ﬁ

, {a) Parallel view

:
B
[Z
A
)|
- . X
{0,0,2.) 2
Focal (eye) point
&

(b} Perspective view
Fig. 9.18 Camera Model for Ray Tracing

A ray is a straight line which is best defined in a parametric form as a point :
(% Yoo Zo) and a direction vector (Ax, Ay, Az). Thus, aray is defined as [{xg. Yo+ Z0)
(Ax, Ay, Az)]. For a pararpeter I, any point (x, y, z) on the ray is given by

X E:-J:ﬂ + FI'-’I-I

y = v+ 1AY (9.8)
This form allows points on a ray to be ordered and accessed viaa single parameter
t. Thus, a ray in a parallel view that passes through the pixel (x, y) is defined as
T{;‘ﬁ ¥, 0) (0, 0, 1)]. In a perspective view, the ray is defined by (0,0, z.) (x ¥ r_::.:}]
given the screen center (0, 0. 0) and the focal point (0, 0, z.). In the parallel view,
fis la‘kt::n to be zero at the pixel location while it is zero at the focal point (and 1 at
the pixel location) in the perspective view. ‘
Aray-tracing algorithm takes the above 1ay definition given by Eqs.-[‘é‘-‘.ﬁ J-as an
input and output information about how the ray intersects the scene. Knowing the

542 = CAD/CAM Theory and Practice

camera model and the solid in the scene, the algorithm can
enters and exits the solid, as shown in Fig. 9.19 for
information is an ordered list of ray parameters,
points and a list of pointers, S, to the surfaces (face
The ray enters the solid at point {1y, EXits at 7,,

i paralleg

: i
Viewy, T.g, YeN

dﬂ]‘lut{m the .
5) through which lh:r.'“m“”'

Point 7, is closest to the screen and point ¢, is furthest

AWAY, The 1. > 8l
: : i s ; e listg 4-
parameters and surface pointers suffice for various applic of

ations,

T“d_:r
HBoenc
Pixel T f0=0 f N 3 te
{I! .1"} -"'g R.II}'
&1 2 h g &4
Serecn
Output Ot In it In

Ot
information ;=0 i, &)

o g
2.5 1,8 1,85,

Fig. 9.19 Output Information from Ray Tracing

9.5.1.2 Basic Ray-Tracing Algorithm

While the basics of ray tracing is simple, their implementation into a
is more involved and depends largely on the representation scheme of the modeler
When boundary representation is used in the object definition, the ray-traciy
algorithm is simple. For a given pixel, the first face of the object intersected by (e
ray is the visible face at that pixel.

When the object is defined as a CSG model,
because CSG models are compositions of soli
primitives with a ray yields a number of intersec

calculations to determine which of these points are intersection points of the ray
with the composite solid (object).

A ray-tracing algorithm for CSG models consists of three main modules: ray/
primitive intersection, ray/primitive classification and ray/solid (or ray/ objec)
classification.

solid modeler

the algorithm is more complicated
d primitives. Intersecting the solid
tion points which requires addition]

Ray/primitive Intersection Utilizing the CSG tree structure, the general ray/
solid intersection problem reduces to the ray/primitive intersection problem. The
ray enters and exits the solid via the faces and the surfaces of the primitives.
For convex primitives (such as a block, cylinder, cone and sphere), the ray/
primitive intersection test has four possible outcomes: no intersection (the ray misses
the primitives), the ray is tangent to (touches) the primitive at one point, the ray
lies on a face of the primitive, or the ray intersects the primitive at two ::I_lffer-:m
points. In the case of a torus, the ray may be tangent (o it at one or two points and
may intersect it at as many as four points. f e
The ray/primitive intersection is evaluated in the local coordinate system o o
primitive (see Fig. 6.4) because it is very easy to find. The equation of a primiti

Visual Realism = 543
1) to (6.66)] expressed in its local coordinat is si

= i ras ‘ Pt e system 1s simple c

!Eélfpﬂndant of any rigid-body motion the primitive may undergo to be &imﬁ

i7"y in @ SCENE. Arbitrary E"'P“"f cylinders in the scene are all I‘Eﬂ: same primitive

!::{;15 jocal coordinate .';I:.-fstem, a right ¢ircular cylinder at the origin. Similarly

i . 45 are the same sphere, elliptic cones are the same right circular cone and

p Given a 1ay originating in the screen coordinate system (SCS), it must b
sformed into the primitive (local) coordinate system (PCS) via the scene {m;mel?

¢ e ordinate system gMCS} in order to find the ray/primitive intersection points
Gach pﬁmiﬂ“’ has 115 l::cal—tq—scau& transform and inverse, but there is onl -:-na:
_to-screen tran sform and inverse. The local-to-scene [T} 5] and Eu:eneimﬁsireen
Itransfnnmtmn matrices are determined from user input to orient primitives
views of the scene respectively. The transformation matrix [T'] T_haﬁ

a ray from a local-to-screen coordinate system is given by

[T] = [Ts5][Ty 5] (9.9)
e, a ray can be transformed to the PCS of a primitive by transforming its

Therefore, 818Y & = == s
fixed point and direction vector:

-1 ¥o: A
T e (9.10)

L. =1

= local - lsereen

As discussed in Chap. 8,.geometric transformation is a one-to-one correspondence.
Thus, the parameter ? that designates the ray/primitive intersection points need not
be transformed once the intersection problem is solved in the PCS. Therefore, only
rays need to be transformed between coordinate systems, not parameters.

The ray/plane intersection calculation is simple. For instance, to intersect the
parameterized ray [(xg: Yo Zo) (Ax, Ay, A2)] with the XY plane, we simultaneously

solvez=0andz=2p + tAz for t to get
(9.11)

[E ——

Az

Having found ¢, the point of intersection is

[xp + (= Zo/A)AX, Yo + (= 7/ Az)Ay, 0] .
o the plane, so they do not intersect, If the point of
then it is a good ray/ primitive
the X¥ plane of a block given

If Az is zero, the ray is parallel t th
intersection lies within the bounds of the primitive,

intersection point. The hounds test for this point on

by Eq. (6.61) is .
| 0<(x, +rA)<W and 0<(yy+1Ay) S H (9.12)

Finding ray/quadric intersection points is s.Iig_htI_v more difficult. Consider a
cylindrical surface given by Eq (6.68). Substituting the x and y components of the

ray’s line equation into Eq. (6.68) yields
(xo + tAX)" + (Vo + 1Ay): = R* (9.13)

R T EETEE S o e R
it =y

e R E LRSS L R

544 E CAD/CAM Theory and Practice

Rearranging gives ool
PI(AX)? + (Ay)T] + 20(ap Ax + Yy Ay) + x5 +y5— R =0 014
Using the quadratic formula, we find 1 as
_B+.B* -4AC
= 24 15,

where
A = (&) + (&)
B = 2(xphx + ypdy)

g (9.16)
Obviously, the ray will intersect the eylinder only if A # 0 and (B — 440y
Having found the one or two values of 1, the bounds test for the cylindrica) Surt‘age isl

0<(zg—tA2) S H .1

Intersecting rays with a torus is more complicated because it is a quartic g,
It is left as an exercise (see the problems at the end of the chapter) for the regg,,

Ray /primitive Classification The clasls_iﬁuﬂtiﬂfl of a ray with respect "
primitive is simple. Utilizing the set membership classification function introduceq
in Sec. 6.5.3 and the ray/primitive intersection points, the “in,” “out,” and “on"
segments of the ray can be found. As shown in Fig. 9.19, the odd Intersection
-points signify the beginning of “in” segments and the end of “out” segments,
For the convex primitives, if the ray misses or touches the primitive at gpa
point, it is classified as completely “out.” If the ray intersects the primitive in two
different points, it is divided into three segments: “out-in-out.” If the ray lies on
face of the primitive, it is classified as “out-on-out.” With respect to a torus, a ray

is classified as “out,” “out-in-out,” or “out-in-out-in-out.”

Raylsolid Classification Combining ray/primitive classifications produces the
ray/solid (or ray/object) classification. Ray/solid classification produces the “in,”
“on,” and/or “out” segments of the ray with respect to the solid. It also reorders
ray/primitive intersection points and gives the closest point and surface of the solid
to the camera. To combine ray/primitive classifications, a ray-tracing algorithm
starts at the top of the CSG tree, recursively descends to the bottom, classifies the

- ray with respect to the solid primitives and then returns up the tree combining the

classifications of the left and right subtrees. Combining the “on” segments requires
the use of neighborhood information as discussed in Chap. 6. Figures 9.20 and
9.21 illustrate ray/solid classification. The solid lines in Fig. 9.21 are “in” segments.

The combine operation is a three-step process. First, the ray/primitive intersection
points from the left and right subtrees are merged in sorted order, forming &
segmented composite ray. Second, the segments of the composite ray are classified
according to the boolean operator and the classifications of the left and right rays
along these segments. Third, the composite ray is simplified by merging continuous
segments with the same classification. Figure 9.22 illustrates these three steps for

N S e
B iy g T

:. - o,

Visual Realism = 545

tor Combining clas sifications involves boolean algebra where the

anion Bpf‘;;eratﬂf is replaced by the difference operator. Table 9.1 defines the
£1l 2

mplﬂﬂ"

cOr . o pules-
goroP!P"

1

Fig. 9.20 Sample Ray and a C5G Tree

The Algorithm : _To draw the visible edges of a solid, aray per pixel is generated
moving top-down, left-right on the screen. Each ray is intersected with the solid
and the visible surface in the pixel corresponding to this ray is identified. If the
visible surface at pixel (x, ¥) is different from the visible surface at pixel (x -1, y),
then display a vertical line one pixel long centered at (x — 0.5, y). Similarly, if the
visible surface at pixel (x, y) is different from the visible surface at pixel (x, y—1),
then display a horizontal line one pixel long centered at (x, y — 0.5). The resulting
line drawing with hidden solids removed will consist of horizontal and vertical
edges only. Figure 9.23 shows a magnification of a drawing of a box with a hole.
Figure 9.234 shows the pixel grid superimposed on the box and Fig. 9.23b shows
ﬁlﬁ drawing only. As shown in Fig. 9.234, the pixel-long horizontal and vertical

Ines may not coincide with the solid edges. However, the hidden solid still looks
Acceptable to the user’s eyes because of the small size of each pixel.

546 = CAD/CAM Theory and Practice

N ey 5 e

Lefl subtree Right subtree

. LR————— - - —
LR————————— R e e e A M
L-R—————— — o e

———
-—

Fig. 9.21 Combining Ray Classifications

Table 9.1 The Combine Rules for Boolean Algebra

Operator Left subtree Right subtree Combine
Union : IN IN IN
IN ouT IN
ouT N IN
| ouT ' ouT ouT
'. Intersection IN =3 IN IN
] IN ouUT ouT
1 OUT IN ouT
i ouT ouT ouT
d Difference ™ ™ ouT
2 IN ouT : IN |
¥ ouT IN outr |
‘ﬁ ouT ouT our __§
i R T T Ee e e T e T e AT T A Tt ke e S

In pseudo code, a ray-tracing algorithm may be expressed as follows:

A
8 i £

Visual Realism 547

e R aY TRACE
proce h pixel (x, y) do
jor €3¢ i
enerate & ray through pixel (x, y)
i solid to be hidden is not a primitive {ray classification}
then
do {combine}
classify ray against left subtree {L_classify)
classify ray against right subiree [R_classify)
combine (L_classify and R_classify)
end {combine}
glse
do {primitives}
transform the ray equation from SCS to PCS
hranch to the proper primitive case:
Block:
do 6 ray-plane intersection tests;
Sphere:
do 1 ray-quadric intersection test;
Cylinder:
do 2 ray-plane & 1 ray-quadric intersection tesis;
Cane:
do 1 ray-plane & 1 ray-quadric intersection tests;
Torus:
do 1 ray-guartic intersection test;
end {branch}
classify ray against primitive
end {primitives}
er.d {ray-classification} .
find the first visible surface S, in pixel (x, y)
if S, in pixel (x,y) is different than S, in pixel (x-1, ¥}

then
dieplay a pixel-long vertical line centered at (x-0.5, y)
.else
if S, in pixel (x,y) is different than S, in pixel (x, y-1)
then :
display a pixel-long horizontal line centered at (X, y-0.5)
end {if}
end {if}
end {pixel loop} _
________ el
[:———— b T [T N
———_-..._————-.— —————————————
R-_ TP L]
______] —— = — = —

El{'-p I-Mﬂﬂﬂd:—'——ia——ni——-———-—-——-— =
Step 2. Classified: i el = T

il

Step 3. Simplified: — — *—

Fig. 9.22 The Three-step Combirie Process

548 = CAD/CAM Theory and Practice

P=p===$= E
= - =13 F —— Ray-traced e
A 42 | solid
it — —
| I il — oL
m . ‘i —— Original T
{ [LI solid
u_ = L g =)
| | f-f—l
il |
=
{a) With pixel grid (&) Without pixel grid

Fig. 9.23 Solid Appearance after applying Ray-tracing Algorithm

9.5.1.3 Improvements of the Basic Algorithm

The basic ray-tracing algorithm as described in the above section is very slow g
its memory and CPU usage is directly proportional to the scene complexity, thatjs
to the number of primitives in the solid. In practice, the use of memory is noy a
much a concern as how fast the algorithm is. To appreciate the cost of using r
tracing, consider the scenario of a scene of a solid composed of 300 primitives
drawn on a raster display of 500 x 500 pixels. Since the solid is composed of
300 primitives, its CSG tree has 300 (actually 299) composite solids, making a
total of 600 solids which a ray must visit via 600 calls of the algorithm to itself,
Thus 600 x 500 x 500 calls of the ray-tracing algorithm are needed. At each
composite solid in the tree, the left and right classifications must be combined
requiring 300 x 500 x 500 classification combines. In addition, 300 x 500 x 500
ray transformations from SCS to PCS are required. Finally, assuming an averag
of four surfaces per primitive, a total of 4 x 300 x 500 x 500 ray-intersection fests
are performed. Therefore, the total cost of generating the hidden solid (or the shaded
image) line drawing is the sum of these four costs.

The above high cost of the basic ray-tracing algorithm is primarily due to the
multipliers 300 and 500 x 500. Many applications may require casting a ray-fron
every other pixel (or more), thus reducing the latter multiplier to 250 x 250. This1s
equivalent to using a raster display of resolution 250 = 250 instead of Smxﬁﬂﬂ-
The former multiplier can be reduced significantly for the large class of solids
using box enclosures.

By using minimum bounding boxes around the solids in the CSG tree, ¢
extensive search for the ray/solid intersection becomes an efficient binary searci
These boxes enable the ray-tragcing algorithm to detect the ‘“‘clear miss” “‘!ﬁﬂl'
between the ray and the solid. The CSG tree can be viewed as a hierarchi€?
representation of the space that the solid occupies. Thus, the tree nodes Wﬂl_’m s
enclosure boxes that are positioned in space. Then, quick ray/box interse::llcuﬁﬂb'-:
guide the search in the hierarchy. When the test fails at an intermediate node " ,mE
tree, the ray is guaranteed to be classified as out of the composite; thus recursite
dﬂwn the solid’s subtrees to investi gate further is unnecessary.

Visual Realism = 549

74 shows the tree of box enclosures for the solid shown in Fig. 9.20.
pigure 7 .“;cfﬁﬂcl_iﬂn test 15 hzismﬂ]]}{ two dimensional because rays usually
e myﬂmic!mﬂn and extend infinitely into the scene. When rays are bounded

S

it ;ﬂlth i mass property applications), a ray/depth test can be added, Unlike
: gl Lk

W, and intersection OpETators, the subtraction operator does not obey

e mu-.:r:'lr;llm of algebra. The enclosure of A — B is equal to the enclosure of
wsud F

Tewtﬂrﬁmgs of B.

Fig. 9.24 Tree of Box Enclosures

9514 Remarks

The rﬂ:."-l.l'ﬂ;l'.il'lg algorithm to generate line drawings of hidden solids has few
advantages. It eliminates finding, parameterizing, classifying and storing the curved
edges formed by the intersection of surfaces. Finding the gsilhouettes of curved
surface is a byproduct and can be found whenever the view changes.

The main drawbacks of the algorithm are speed and aliasing. Aliasing causes
nges to be jagged and surface slivers may be overlooked. Speed is particularly
important to display hidden solid line drawings in an interactive environment. It
the user creates a balanced tree of the solid in the scene, the efficiency of ray
lr:-iEing improves. Coherence of visible surfaces (surfaces visible at two neighboring
Pixels are more likely to be the same than different) can also speed up the algorithm.
Inaddition, edges of the solid are only sought to generate line drawings. Thus, ray
lracing should be concentrated around the edges and not in the open regions. This
tan be implemented by sparsely sampling the screen with rays and then locating
(When neighboring rays identify different visible surfaces) the edges via binary
searches. The sampling rate is under user control. As the sampling becomes sparser,
the chance that solid edges and slivers may be overlooked becomes larger.

550 CAD/CAM Theory and Practice

9.6 £ SHADING

Line drawings, still the most common means of comm Lll"li{;:_]l'[iﬂg the geome
mechanical parts, are limited in their ability to portray iniricate shapesg Ehglnf
color images convey shape informat ion that cannot be represented in lipe drawip '::ii
Shaded images can also convey features other than shape such as surface fini‘r.h!:&
material type (plastic or metallie look). o ‘ =
Shaded-image-rendering algorithms filter information by displaying only
visible surface. Many spatial relationships that are u111:e3n|ved in simple wirefrg
displays become clear with shaded displays. 5[““1‘3'?] HMAZESs are easier (o Interprey
because they resemble the real objects. Shﬂ{jm! images also have viewing Problems
not present in wireframe displays. Objects of interest may be hidden or paniy)
ohstructed from view, in which case various shaded images may be obtained r‘r{],i
various viewing points. Critical geometry such as lines, arcs and vertices arp not
explicitly shown. Well-known techniques such as shaded-image/ wireframe overlay
(Fig. 9.25), transparency and sectioning can be used to resolve these problems,

the
Me

Fig. 9:25 Shaded-image/Wirgframe Ouverlay

One of the most challenging problems in computer graphics is to generate images
that appear realistic. The demand for shaded images began in the early 19?']'5
when memory prices dropped enough to make the cost of raster technology attractive
compared to the then-prevailing calligraphic displays. In shading a scene (rendering
an image), a pinhole camera model is almost universally used. Rendering begins
by solving the hidden surface remowval problem to determine which objects and/or
portions of objects are visible in the scene. As the visible surfaces are found, llhc}'
must be broken down into pixels and shaded correctly. This process musi take 1010
account the position and color of the light sources and the position, orientation an
surface properties of the visible objects.

Visual Realism = 551

eful shading calculations can be distorted by defects in the hardware to display
";ﬂ age Some of the common defects are pp;
s

: 1 5, the spot size of the deflection
(he , and the fidelity of the display. The noise can occyr either in the delivery of

- : rpness of the image suffers if ,
spot siZ€ is too large. The fidelity of a display is a measure of how the light

calculated by a shading model is reproduced on the screen. Nonlinearities

. the intensity cﬂntm! circuits or in the phosphor Tesponse can distort the amount
u:’anﬂrﬂ},r actually emitted at a pixel. ¥
D =

961 Shading Models

shading models simulate the way Visih]elsurf.aces of objects reflect light. They
determine the shade of a point of an object in terms of light sources, surface
characteristics and the positions Elmc'l ﬂ[‘lEl:ltEll.iﬂI]E of the surfaces and sources. Two
types of light sources ::an.be 1::lent1ﬁﬂ4:l: point light source and ambient light. Objects
iluminated with only point light source look harsh because objects are illuminated
from one direction only, This produces a flashlight-like effect in a black room.
Ambient light s a light of uniform brightness and is caused by the multiple reflections
of light from the many surfaces present in real environments.

Shading models are simple. The input to a shading model is intensity and color
of light source(s), surface characteristics at the point to be shaded and the positions
and orientations of surfaces and sources. The output from a shading model is an
intensity value at the point. Shading models are applicable to points only. To shade
an object, a shading model is applied many times to many points on the object.
These points are the pixels for a raster display. To compute a shade for each point
on a 1024 x 1024 raster display, the shading model must be calculated over one
million times. These calculations can be reduced by taking advantage of shading
coherence; that is, the intensity of adjacent pixels is either identical or very close.

Letus examine the interaction of light with matter to gain an insight into how to
develop shading models. Particularly, we consider point light sources shining on
surfaces of objects. {(Ambient ght adds a constant intensity value to the shade at
SYery point.) The light reflected off a surface can be divided into two com ponents:
@ifiuse and specular. When li ght hits an ideal diffuse surface, it is reradiated equally
n all directions, so that the surface appears to have the same brightness from all
Viewing angles. Dull surfaces exhibit diffuse reflection. Ex amples of real surfaces
that radiate mostly diffuse light are chalk, paper and flat paints. Ideal specular
*Wraces reradiate light in onl y one direction, the reflected light direction. Examples
of specular surfaces are mirrors and shiny surfaces. Physically, the difference

'_-""'-'EEII these twao components is that diffuse light penetrates the surface of an
Object and is scattered internally before emerging again while specular light bounces
Off the surface.

he light reflected from real objects contains both diffuse and specular
“0Mponents and both must be modeled to create realistic images. A basic shading

552 = CAD/CAM Theory and Practice

model that incorporates both a point light source and am bient light can be describe d
as follows:

Ip=1,+L+1, (9.18

where 1, I, I, and 1, are respectively the resulting intensity (the amount of shade
at point P, the intensity due to the diffuse reflection component of the pninJ
light source, the intensity due to the specular reflection component ang lhu[
- intensity due to ambient light. Equation (9.18) is written in a vector form, to

enable modeling of colored surfaces. For the common red, green and blye color
system. Eq. (9.18) represents three scalar equations, one for each color. Far
simplicity of presentation, we develop Eq. (9.18) for one color and therefore refe,
toitas Ip=1,+ I_+ I, from now on (drop the vector notation).

To develop the intensity components in Eq. (9.18), consider the shading mgdg
shown in Fig. 9.26. The figure shows the geometry of shading a point P gq 4
surface S due to a point light source. An incident ray falls from the source to P g g5
angle g (angle of incidence) measured from the surface unit normal A at P The
unit vector I points from the light source to P. The reflected ray leaves P with an
angle of reflection 6 (equal to the angle of incidence) in the direction defined by the
unit vector F . The unit vector ¥ defines the direction from P to the viewing eye,

Light suumu%:?

Viewing eye i , //Innidr_-m ray
r i 1

V.

"J‘:l

Fig. 9.26 The Geometry of Shading a Point
9.6.1.1 Diffuse Reflection

Lambert’s cosine law governs the diffuse reflection. It relates the amount of reflected
light to the cosine of the angle #between I and 5. Lambert’s law implies that the
amount of reflected light seen by the-viewer is independent of the viewer’s position.
The diffuse illumination is given by

ly= 1K cosé {9.19)
where /; and K, are the intensity of the point light source and the diffuse-reflection
coefficient respectively. K, is a constant between 0 and 1 and varies from one
material to another. Replacing cos € by the dot product of I and fi, we can rewrite
Eq. (9.19) as

Ii=LKfLfi-1) ' (9.20)
Note that since diffuse light is radiated equally in all directions, the position of the

viewing eye is not required by the computations and the maximum intensity oCcurs
when the surface is perpendicular to the light source. On the other hand, if the

O o ———

Visual Realisin = 553
le of incidence & exceeds 90,
a"f.—,[bc set to zero. A sphere shaded with this

brightest at th::rpmnt on the surface between the center of the sphere and the
jjght source and will be completely dark on the far half of the sphere from the light.

Some shading models assume the point source of light to be coincident with the
yiewing eye, 50 n0 shadows can be cast. For paralle] Projection, this means that

fight rays striking a 5“Trﬂ“‘3 are all parallel. This means that 7 . I is constant for
entire surface, that is, the intensity 7 is

constant for the surface, as shown by
Eq. [9_2&].
9.6.1.2 Specular Reflection

o
ection only) will

specular reflection is a characteri s:tin: of shiny surfaces, Highlights visible on shiny

aces are due to specular reflection while other light reflected from these surfaces
is caused by diffuse I‘tl‘ﬁEFﬁﬂl’L The location of a highl; ghton a shiny surface depends
on the directions of the light source and the vi

. 1 ewing eye. If you illuminate an apple
with 2 bright light, you can observe the effects of specular reflection. Note that at

the highlight the apple appears to be white (not red), which is the colar of the
incident light.

The specular component is not as €asy 1o compute as the diffuse component.
Real objects are nonideal specular reflectors and some [ghtisalso reflected slightly
off axis from the ideal light direction (defined by vector ¥ in Fig. 9.26). This is
because the surface is never perfectly flat but contains rmicroscopic deformations.

For ideal (perfect) shiny surfaces (such as mirrors), the angles of reflection and
incidence are equal. This means that the viewer can only see specular reflected
light when the angle a (Fig. 9.26) is zero. For nonideal (nonperfect) reflectors,
such as an apple, the intensity of the reflected light drops sharply as erincreases.
One of the reasonable approximations to the specular component is an empirical
approximation and takes the form

I.=1; W(8& cos" o
For real objects, as the angle of incidence (#) changes,

reflected light also changes and W(&) is intended to m
however, W(&)

(9.21)

the ratio of incident light to

odel the change. In practice,

has been ignored by most implementors or very often is set to a
constant K, which is selected experimentally to produce aesthetically pleasing
results.

The value of nis the shininess factor and typicall y varies from 1 to 200, depending
onthe surface. For a perfect reflector, n would be infinite. cos” @reaches a maximum
when the viewing eye is in the direction of {x=10). As n increases, the function
dies off more quickly in the off-axis direction. Thus, a shiny surface with a
concentrated highlight would have a large value of n, while a dull surface with the
highlight coveri ng a large area on the surface would have a low value of n, as

shown in Fig. 9.27. Replacing cos @by the dot product of ¥ and ¥, we can rewrite
Eq.19.21) as

L =1,Wer-v) (9.22)

554 Z CAD/CAM Theory and Practice

{s I . J
] Iy
e il .—E . o= b —ir O
- 2 0 2 — /2 0 2 — 2 0 s
Perfect mimmor . Shiny surfnce Dull surface

Fig. 9.27 The Reflectance of Various Surfaces as a Function of o

If both the viewing eye and the point source of light are coincident at infinjt
r - v becomes constant for the entire surface. This is because a . ¥ lhm'ji’
cos (@+ a)and ni - I, that is, cos 8 become constant. ’
Other and more accurate, shading models for specular reflection have been

developed and are available but are not discussed in this book. Among these req
models are the Blinn and Cook and Torrance models.,

9.6.1.3 Ambient Light

Ambient light is a light with uniform brightness. It therefore has a uniform o
constant intensity /. The intensity at point P due to ambient light can be Written
as:

listic

- Iy =1I.K, (9.23)
where K, is a constant which ranges from 0 to 1. It indicates how much of the

ambient light is reflected from the surface to which point P belongs.
Substituting Egs. (9.20), (9.22) and (9.23) into Eq. (9.18), we obtain

Ip= LKy + IIK R - 1)+ WO(F - ¥)1] (9.24)
If W(#) is set to the constant K, this equation becomes

In=ILK +LIK(h- 1)+ Ky (F -)1 (929

o

All the unit vectors can be calculated from the geometry of the shading model
while constants and intensities on the right-hand side of the above equation are
assumed by the maodel. Additional intensity terms can be added to the equation if
more shading effects such as shadowing, transparency and texture are needed.
Some of these effects are discussed later in this section.

9.6.2 Shading Surfaces

Once we know how to shade a point [Eq. (9.25)] we can consider how to shadea
surface. To caleulate shading precisely, Eq. (9.25) can be applied to each point on
the surface. Relevant points on the surface have the same locations in screen
coordinates as the pixels of the raster display. Determining these points is an oulcome
of hidden surface removal. The normal unit vector n used in Eq. (9.25) df‘:Pf”‘j”'
on the surface geometry and can be computed a new for each point of the display-
This would require a large number of calculations. Sometimes they are:a.:valﬂﬂ!.‘ﬂd
incrementally. If a bicubic surface is to be shaded in this way, its parametric equation

Visual Realism E 555

to subdivide it into patches whose sizes are equal to or less than the pixel
is usﬂdﬂgr the visible surfaces are determined, the unit normal vector of each patch
gi:ﬂﬂ-‘a" jated exactly and the patch i5 shaded using Eq. (9.25).
i5 cﬂ]nﬂ“[curfaces, including those that are curved, are described by polygonal meshes
Mﬂl; ¢ visible s:urf_am? cu!cul&th}_ns are (o tgﬂ performed by the majority of rendering
whel! shms. The majority of shading techniques are therefore applicable to objects
H]gnl'll ed as polyhedra. Among the many existing shading algorithms, we discuss
prec of ther: constant shading, Gourand or first-derivative shading and Phong or

ﬂnd.derlvaﬁ ve shading.
ig;{ Constant Shading

This the simplest and less realistic h‘]‘lEldiI? E a]gm'illhm. Since the unit normal vector
ofapolygon nevﬁr_chzlngtm. polygons will have just one shade. An entire polygon
pas 4 single intensity value Cﬂjcu}i’ftf{l from Eq. (9.25). Constant shading makes
the Pul}rgnnal representation nlwn:nzls ard .]J]'ﬂ:dur::eﬁ unsmooth shaded images
(intensity discontinuities). Actually, if the viewing eye or the light source is very
close to the surface, the shade of the pixels within the polygon will differ
mgm_ﬁcﬂl'lﬂ}' : . o

The choice of point P (Fig. 9.26) within the polygon becomes necessary if the
light source and the viewing eye are not placed at infinity. Such a choice affects
* calculation of the vectors T and V. P can be chosen to be the center of the polygon.

On the other hand, I and ¥ can be calculated at the polygon corners and the
average of these values can be used in Eq, (9.25). :

9.6.2.2 Gourand Shading

Gourand shading is a popular form of intensity interpolation or first-derivative
shading. Gourand proposed a technique to eliminate (not completely) intensity
discontinuities caused by constant shading. The first step in the Gourand algorithm
is to calculate surface normals. When a curved surface is being broken down into
polygons, the true surface normals at the vertices of the polygons are retained. If
more than one polygon shares the same vertex as shown in Fig. 9.28a, the surface

normals are averaged to give-the vertex normal. If smooth shading between the
four polygons shown is required,

]
N, = 7 (Ng+Ng+ N+ Np) (9.26)

If shading discontinuities are to be introduced deliberately across an edge to show
dcrease or a sharp edge in the object, the proper surface normals can be dropped
from the above equation. For example, shading discontinuities occur along the AD
and BC boundaries shown in Fi 2. 9.28a if we average only two face normals.

Ny= 2(N, + Np)and N, = & (N + Np) are used to interpolate shades between

polygons A and B and Cand D rﬁap&cﬁve]y. Thus, smooth shading occurs along

g’” AB and CD boundaries while discontinuous shading occurs along the AD and
Choundaries,

_'w
556 E CAD/CAM Theory and Practice

The third step in the Gourand algorithm (after caleculating surface
normals) is to compute vertex intensities using the vertex normals and the dex;
shading model [Eq. (9.25)]. The fourth and the last step is to compute the Ehﬂ;llretl
each polygon by linear interpolation of vertex intensities. If the Gourand algmifhm
is utilized with a scan-line hidden surface algorithm, the intensity ar any Fﬂintm
inside any polygon (Fig. 9.285) is obtained by interpolating along each 4

And verte,

ed
then between edges along each scan line. This gives £€ ang
TI"'.I-p 3'":#—1'.[
fp == +——2JF
T ok =xg N Xpmxy 2 .27
B SR i Yy
Iy w ===, =],
R T PR e 928
_}I-II- TR J".s J"I.s = }3
O PR i o T |
* Ja —.Ya .7 R) (9.29)
Y
A
I 7,
o Lo iF I Scﬂﬂ!iﬂg
P
I3
w g

A
(&) Intensity interpolation along polygon edges

Fig. 9.28 Gourand Shading

(a) Surface normals

Gourand shading takes longer than constant shading and requires more planes
of memory to get the smooth shading for each color. How are the bits of each pixel
divided between the shading grade and the shade color? For example, one may use
the red color to obtain a light red shade, a dark red shade, or any variation in
between. Let us consider a display with 12 bits of color output, that is, 2" or 4096
simultaneous colors. If we decide that 64 shading grades per color are required to
obtain fairly smnooth shades, then 4096/64 = 64 gross different colors are possible.
Actually only 63 colors are possible as the remaining one is reserved for the
background. Within each color, 64 different shading grades are possible. This means
that six bits of each pixel are reserved for colors and the other six for shades. The
lookup table of the display would reflect this subdivision, as shown in Fig. 9.29.
Usnally, the six least significant bits (LSB) correspond to the shade and the six
most significant bits (MSB) correspond to the color, so that when interpolation is

performed to obtain shading grades the six most significant bits (i.e., the color)
remain the same.

Visual Realism = G557

mse [|] |]I|I|:|I.E:EI %
Color bits Shade bitg
Address Color Shade
0
-~ Backeround =,
63
ﬁ':“ Light shade
a 1 .
127 Dark shade
hedh Light
: 2 .
191 Trark
: : :
4{]'32 L:'i;ht
: o :
005 Dark

Fig. 9.29 5plit of Pixel Bits between Colors and Shades
g.ﬁ.fﬁ Phong Shading

While Gourand shading produces smooth shades, it has some disadvantages. If it
isused to produce shaded animation (motion sequence), shading changes in a strange
way because interpolation is based on intensities and not surface normals that
actually change with motion. In addition, Mach bands (a phenomenon related to
how the human visual system perceives and processes visual information) are
sometimes produced and highlights are distorted due to the linear interpolation of
veriex intensities. '

Phong shading avoids all the problems associated with Gourand shading although
it requires more computational time. The basic idea behind Phong shading is to
interpolate normal vectors at the vertices instead of the shade intensities and to
apply the shading model [Eq. (9.25)] at each point (pixel). To perform the
interpolation, Eq. (9.26) can be used to obtain an average normal vector at each
vertex. Phong shading is usually implemented with scan-line algorithms. In this
case Fig. 9.28b is applicable if we replace the intensities by the average normal
vectars, V,, at the vertices. Similarly, Egs. (9.27) to (9.29) are applicable if the
intensity variables are replaced by the normal vectors.

9.6.3 Shading Enhancements

The basic shading model described in Sec. 9.6.1 is usually enhanced to produce
Special effects for both artistic value and realism purposes. These effects include
Sparency, shadows, surface details and texture,

558 £ CAD/CAM Theory and Practice

Transparency can be used to shade translucent material such as glass and Plasticg
or to allow the user to see through the opaque material. Two shading techniqueg
can be identified: opaque and translucent. In the opaque technique, hidden surfaces
in every pixel are completely removed. In the translucent method, hidden Surfaceg
are not completely removed. This allows some of the back pixels to show through
producing a screen-door effect. :

Consider the box shown in Fig. 9.30. If the front face F| is made translucent, e
back face F; can be seen through F;. The intensity at a pixel coincident w

- ith the
locations of points P, and P, can be calculated as a weighted sum of the intensities
at these two points, that is,

1=Ky + (1 - K)L, 9.30)
where [, and 7, are the intensities of the front and back faces respectively, calculateq
using, say, Eq. (9.25). X is a constant that measures the transparency of the frong
face: when K = 0, the face is perfectly transparent and does not change the inteq sity

of the pixel; when K = 1, the front face is opaque and transmits no light. Sometimeg
transparency is referred to as X-ray due to the similarity in effect.

Yu b — Back face F;

.
|~
-
£
1
— Front face

X
A::wing direction

Zos
Fig. 9.30 Transparency and Visibility of Back Faces

Shadows are important in conveying realism to computer images. More
importantly, they facilitate the comprehension of spatial relationships between
objects of one image. The complexity of a shadow algorithm is related to the model
of the light source. If it is a point source outside the field of view at infinity, the
problem is simplified. Finding which objects are in shadow is equivalent to solving
the hidden surface problem as viewed from the light source. If several light sources
exist in the scene, the hidden surface problem is solved several times—every time
one of the light sources is considered as the viewing point. The surfaces that are
visible to both the viewer and the light source are not shaded. Those that are visible
to the viewer but not to the light source are shaded,

Surface details that are usually needed to add realism to the surface image are
better treated as shading data than as geometrical data. Consider, say, adding a
logo of an object to its image, The logo can be modeled using “‘surface-detail”
polygons. Polygons of the object geometric model point to these surface-detail

Visual Realism 559

ons. Ifone of ﬂ-..? geometric model p:::l}r gons 15 to be split for visibility reasons,
p i 5 onding surface-detail polygon is splitin the exact fashion. Surface-detail
s 0 Tasob viously cover the surfn-::: polygons when both overlap. When the shaded
is generated. the surface details are guaranteed to be visible with their desired
rbutes. SEparaiing the polygons of geometric models and surface details

up the rendering of images significantly and reduces the possibility of
opeed :ng erroneous images.

= exture is important 1o provide the illusion of reality. For example, modeling of
A casting SIIDUI'EI include the rough texture nature of its surfaces. These objects,
lll'lll:fl'-rl‘m high frequencies, could be modeled by many individual polygons, but as the
n waiof polygons increascs, they can easily overflow the modeling and display
mlmmms. Texture mapping (Fig. ‘3-"1 1) 15 introduced to solve this problem and
covide the illusion _nf_ complexity at a reasonable cost. It is a method of
u“-ﬂllpslpl’-ﬁ“g“ the existing polygons. As each pixel is shaded, its corresponding
tr::ﬂum-::ul::rrdi‘nmes are ﬂhtz_unﬂi:l from tht_: l::-:xtun: map and a lookup is performed in
anvnrdimensmnal array of colors contaimng the texture. The value in this array is
ysed as the color of the polygon at this pixel, thus providing the “wallpaper.”

—— Polygon to be shadad

Pixel

Screen
Fig. 9.31 Texture Mapping

Three-dimensional texture mapping is easier to use with three-dimensional
objects than two-dimensional texture mapping. It is a function that maps the object’s
spatial coordinates into three-dimensional texture space and uses three- dimensional
textures. Thus, no matter what the object’s shape is, the texture on its surface is
consistent. This is useful to model materials such as wood and marble. Due to the
space required to store a three-dimensional array of pixels, procedural textures
can be used. However, they are difficult to be antialiased. Texture mapping can
contain other surface properties besides color to increase the illusion of complexity.
For example, surface normal perturbations could be stored in the texture map (bump
mapping) to enable the simulation of wrinkled surfaces.

E“mplt 2 91 Apply the shading model given by Eq. (9.25) to the scenc of the

two boxes shown in Fig. 9.13a. Assume that the visible surfaces have been identified
as shown in Fig. 9.13¢. Use n = 100 for the specular reflection component.

—.-q.:‘_.;.-;'%

560 = CAD/CAM Theory and Practice

Solution Let us assume that the point light source ig placed infing

coincident with the viewing eye. Table 9.2 can be derived to €nable uge op F t
The table shows the components of the vectors of each face in he)
Fig. 9.13a. Substituting the values in Table 9.2 into Eq. (9.25) gives Show,, i

Face F: Ip= LK, + I;[-K,; + (K,)'%
Face F,: lp=1, K, + I (K)'®

Face Fy: Ip = 1,K, +1(K)'™

Face Fy; Ip=1,K, + I [-K; + (K,)'%0)
Face F.: Ip= 1K, + I,(K)'"®

Face F:- Ip=I.K, + I(K)'™

The intensities [, and I, are chosen based on the maximum intensijt
have. The coefficients X, K,and K, are chosen based on experimental Measure e

The above equations assume constant shading. Notice that the shading of andnif‘
and F,, F, Fs and Fg are equal. This will make Fy and Fy ang Fs and F‘F
indistinguishable in the shaded image. A solution to this problem wonld he to u&:
Gourand or Phong shading. The reader is encouraged to calculate both of them z¢

exercise and compare intensities (see the problems at the end of the chapter),
9.6.4 Shading Solids

Shading is one of the most popular applications of solid modelj ng. In fact, shading
and solid modeling are often erroneously equated. Shading algorithms of solids
can be developed based on exact solid’s representation schemes (B-rep and CSG)
Or on some approximations of these schemes (faceted B-rep). A considerable number
of existing solid modelers utilize the latter schemes to speed up the rendering of
shaded image. The rationale behind this approach is that shaded images usually
serve the purpose of visualization only. While the solid modeler maintains its exact
representation scheme intermnally for analysis purposes (mass property calculations,
NC tool path generation and finite element modeling), an approximate representatio
(polygonal approximation of exact geometry) is derived for shading purposes,
Sometimes, these exact and approximate (for visualization purposes) re presentations
are referred to as analytic and visual solid modelers respectively.

¥ a Pi:’lf‘.‘:l Ma

Table 9.2 Vectors for Example 9.1

Face Y | £ v

Fy (0, 0, 1) (0, 0, =13 (0, 0, 1) (0, 0, 1
F, (1, 0, O) (0, 0, -1) (0,0, 1) (0,0, 1)
Fy (0, 1, 0 " {0, 0, -1) (0, 0, 1) (0,0, 1)
F, (0,0, 1) (0, 0, -1) (0, 0, 1) (0,0, 1)
Fe™ (1,0, (0, 0, -1) (0,0, 1) (0,0, 1)
Fe (0, 1, 0) (0, D, —1) (0,0, 1) (0,0, 1)

Visual Realism = s5g5

..t (Fig. 9.35b) neighbors of the octant bein

and r:j" are utilized. If the active octant has a void (completely EMpty) octant on the

[,ctaﬂ_dﬁ a surface normal exists in this direction, If any other neighbors are vaid

lsi:lflc - ;1{3 rrnﬁi vectors must lie aiﬂng the same ar :
a

s

; , caas well. The computations of
- vectors are easy because the spatial orientations of the octants in the octree
es
Rnuwﬂ.

Transparency can be mt:de]}ed _with octree structures, For

~ribed above), the quadtree is simply overwritten if an oc
.. Tor ransparent matenals., h_uwwﬂr. the intensit
ﬁﬁg contribution to the existing quadrant by usj
i

E processed (call it the active

Opague materials (as
tant is found to obscure
¥ of the old quadrant is used to
ng, say. Eq. (9.30),

g7 2 COLORING = oo o = o

Theuse of colors in CAD/CAM has two main objectives: facilitate creating geometry
.nd display images. Colors can be used in geometric construction, In this case
various wireframe, surface., or solid enlities can be assigned different colors to
gistinguish them. Color is one of ﬂ‘iﬂf two main ingredients (the second bein £ texture)
of shaded images produced h}rlshadm g algorithms. In some engineering applications
cuch as finite element analysis, colors can be used effectively to display contour
jmages such as stress or heat-flux contours,

Black and white raster displays provide achromatic colors while color dis plays
(or television sets) provide chromatic color. Achromatic colors are described as
black, various levels of gray (dark or light gray) and white. The only attribute of
achromatic light is its intensity, or amount. A scalar value between 0 (as black)
and 1 (as white) is usually associated with the intensity. Thus, a medium gray is
assigned a value of 0.5. For multiple-plane displays, different levels (scale) of
gray can be produced. For example, 256 (2% different levels of gray (intensities)

per pixel can be produced for an eight-plane display. The pixel value V. (which is
related to the voltage of the deflection beam) is related to the intensity level I. by

the following equation: :
1 Ly
V= (E'J : ; (9.31)

The values C and ydepends on the display in use. If the raster display has no
lookup table, V; (e.g., 00010111 in an eight-plane display) is placed directly in the
proper pixel. If there is a table, i is placed in the pixel and V; is placed in entry i of
the table. Use of the lookup table in this manner is called gamma correction, after
the exponent in Eq. (9.31).

Chromatic colors produce more pleasing effects on the human vision system
than achromatic colors. However, they are more complex to study and generate.
Color is created by taking advantage of the fundamental trichromacy of the human
eye. Three different colored images are combined additively at photo-receptors in
the eye to form a single perceived image whose color is a combination of the three
Prime colors. Bach of the three images 1s created by an electron gun acting on a
color phosphor. Using shadow-mask technology, it is possible to make the images
ntermingle on the screen, causing the colors to mix together because of spatial

566 = CAD/CAM Theory and Practice

proximity. Well-saturated red, green and blue colors are typically used 1o Produce
the wide range of desired colors.

Color descriptions and specifications generally include three properties: hye
saturation and brightness. Hue associates a color with some position in the culﬂ;
spectrum. Red, green and yellow are hue names. Saturation describes the Vividnegg
or purity of a color or it describes how diluted the color is by white 1i ght. Pure
spectral colors are fully saturated colors and grays are desaturated colors. Bri ghtnesg
is related to the intensity, value, or lightness of the color.

There exists a rich wealth of studies and methods of how to specify and measure
colors. Some methods are subjective such as Munsell and pigment-mixing methogs.
The Munsell method is widely used and is based on visually comparing unknowry
colors against a set of standard colors. The pigment-mixing method is used by
artists. Other methods used in physics arc objective and treat visible light with
given wavelength as an electromagnetic energy with a spectral energy distribution,
Our primary interest in this section is not to review these studies and methods byt
to describe some existing color models, so that application programs can choose
the desired colors properly. We will also show how some of these models can be
converted to red, green and blue since most of the commonly used CRTs demand
three digital values, specifying an intensity for each of the colors.

5.7.1 Color Models

A color model or a space is a three-dimensional color coordinate system to allow
specifications of colors within some color range. Each displayable color is
represented by a peint in a color model. There are quite a number of color models
available. Some popular models are discussed here. These models are based on the
red, green and blue (RGB) primaries. For any one of these models, coordinates are
translated into three voltage values in order to control the display. This process is
shown in Fig. 9.36, which summarizes the sequence of transformation for some
models. The gamma correction is performed to obtain a linear relationship between
digital RGB values and the intensity of light emitted by the CRT.

CMY ¥1Q HSV HSL

RGB

i

(Giamima cormection _)

Color lookup
table values

Fig. 9.36 Transformation of a Color Model to RGB

Visual Realism 567

1 RGB Model

GB color space uses a cartesian coordinate system as s £,
e space is additive. Thefmzun diagonal of the cube is the locus of equal ::im::mnis’
of each primary and therefore represents the gray scale or levels. In the RGB maodel
plack is at the origin and represented by (0, 0, 0) and white is represented b :

1). Thus in the RGB model, the lowest intensity (0 for each color) PI'G-EIL]I:‘-E::

1, | . p :
tfhﬂ plack color and the maximum intensity (1 for each color) produces the white

color. .

CMY (cyan, magneta, yellow) model shown in Fig. 9.37kist

of the RGB model. The cyan, magneta and yellow cc-lfrs are the chn:;fnﬁfrﬁlsﬂg;
the red, green and blue respectively. The white is at the origin (0, 0,) of the model
and the black is at pomt (1, 1, 1) which is opposite to the RGB model. The CMY
model is considered a suPtracuve mode] because the model primary colors subtract
some color from white light. For example, a red color is obtained by subtracting a
cyan color from the white light (instead of adding magneta and yellow).

H-?'l‘

Bluc
: Cyan Yellow Red
ta fr :
Magen Gra : Iy White Cireen
ey W
-~ Black Green Magenta
Fed el low Eya; Blu=

(&) CMY color space (unit cube)

0.0
Black

(#) HSL color space

(¢} HSV color space
Fig. 9.37 Some Color Models

=

568 = CAD/CAM Theory and Practice

The conversion from CMY to RGB is achieved by the following equation:

F i | g
G|l=|1|—-|M (9.32)
B 1 Y

The unit column vector represents white in the RGB model or black in the Cpvy
model.

9.7.1.3 YIQ Maodel

The YIQ space is used in raster color graphics. It has been in use as a television
broadcast standard since 1953 when it was adopted by the National Television
Standards Committee (NTSC) of the United States. It was designed to be compatible
with black and white television broadcast. The ¥ axis of the color model corresponds
to the luminance (the total amount of light). The 7 axis encodes chrominance
information along a blue-green to orange vector and the () axis encodes chrominance
information along a yellow-green to magneta vector.

The conversion from YIQ coordinates to RGB coordinates 1s defined by the
following equafion:

1.0 095 o062][¥
1.0 —028 —0.64]| 1 - (9.33)
10 -1.11 1.73}|Q

Il

R
G
- B
9.7.1.4 HSV Model

This color model (shown in Fig. 9.37¢) is user oriented because it is based on what
artists use to produce colors (Hue, Saturation and Value). It is contrary to the
RGB, CMY and Y1Q models which are hardware oriented. The model approximates
the perceptual properties of hue, saturation and value.

The conversion from HSV coordinates to RGB coordinates can be defined as
follows. The hue value H (range from 07 to 360%) defines the angle of any point on
or inside the single hexacone shown in Fig. 9.37¢. Each side of the cone bounds
60" as shown in view A-A. If we divide a given H by 60, we obtain an integer parl

i and a fractional part f. The integer part i is between 0 and 5 (H = 360 is treated as
if H =0). Let us define the following quantities:

a 1-8
bl=V|1-58f (9.34)
e 1—-8(1— f)
Then we can write:
(V.ec,a) i
(b, V, a)
(a,V,c)
(a, b, V)
(c,a, V)
(V,a,b)

Il

I

(R, G, B) = 5 (9.35)

Il

Il

il
bh B oW o= O

Il

Visual Reglism = 569
9.7.1.5 HSL Model

: Hue, Saturation, Lightness) _
The HSL { . color model show ,
jouble hexacone space. Itis used by Tektronix. The s ﬂmr;tiin?fﬁgizﬁ fﬂr?a; a
0.5 and not 1.0 as m_thf.': HSV model. The HSL model is g [;15 at V=
model. The conversion from HSLto RGR is po Y to use as the HSV

3 ib .
Jouble hexacone as we did with the HSV mnd‘:ﬁl le by using the geometry of the

98 E USER INTERFACE FOR SHADING Anie
~ COLORING = _ ING AND

M Hjﬂrcc:mmﬂf‘:ial CAFI!CAM Systems provide their users with shading pack e;;
that implement most of the Ehadlng and coloring concepts covered in Sees 9 Eafnd;l
0.7. A shading cﬂmmﬁ.nd with the appropriate shading attributes and H;D(.Ifiﬁ&n-_'i
qllows users to shade either surface or solid models. A generic

syntax f i
shading command may look as follows: yntax for a typical
SHADE (geo mﬂﬂc. model type)(shading modifiers)(shading resolution)
{geometric model entities)) : :

The type of geometric model could be a “surface” or “solid.” The “shade surface”
command would require the user to digitize all the surfaces of the model that are to
be shaded. The back invisible surfaces of a model need not be digitized. Digitizing
surfaces could be very time-consuming and error-prone for complex and dense

models. Users can use the “"window™ modifier offered by their respective systems
to select all the entities displayed in one view by defining a window around them.
The “shade solid” command, on the other hand, identifies the solid to be shaded by
digitizing it only once. This reflects the completeness and unambiguities of solid
models as discussed in Chapter 6.

The shading modifiers of the “shade” command include all the input parameters
and their values, required to define the desired shading model. These modifiers
include a background color, a location of the point light source and a desired intensity
of an ambient light (between 0 and 1). The background color is the color of the
picture (image) background. The location of the point light source is the coordinates
(x, % z) of a point input relative to the MCS. Other modifiers to specify enhancements
of shading models such as transparency and texture are also possible.

The shading resolution is an important input parameter because it controls the
quality of the image to be generated. The higher the resolution of the image, the
higher its quality is and the more CPU time and memory space it takes to generate
it and store it. A low resolution is recommended when the user 1s experimenting 1m
search for the best combination of colors and shading modifiers, especially the
besi location of the point light source to best iluminate the model. H_ﬂ:rw can thﬁ
resolution of an image he made different from the resolution of the graphics display®
Let us define two types of resolution: hardware and software. A hardware nglubung
is the actual resolution of the display and is equal 1o the number of pixels in bot
the horizontal and vertical directions, as discussed n Ch-‘lpl[ﬂ‘l 2. A {',nflwarﬁ
resolution is a scale of hardware resolution and is used by shading sof _I_‘:’-’E.[E u;
control the quality of a shaded image. Consider, for exemple, & graphics dhsplay O

