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SOLID MECHANICS
Course Code — ME601

Objectives:

The objective 1s to present the mathematical and physical principles m understanding the linear
continuum behavior of solids.

Course Contents:

Module-I

Introduction to Cartesian tensors, Strains: Concept of strain, dertvation of small strain tensor and
compatibility, strain gauges and rosettes. (8hrs)

Module-II

Stress: Derivation of Cauchy relations and equilibrium and symmetry equations, principal
stresses and directions, octahedral shear stresses.  (8hrs)

Module-III

Constitutive equations: Generalized Hooke’s law, Linear -elasticity, Material symmetry;
Boundary Value Problems: concepts of uniqueness and superposition. (6hrs)

Module-IV

Plane stress and plane stramn problems, mtroduction to governing equations in polar and
cylindrical coordinates, axisymmetric problems.  (7hrs)

Module-V

Application to thick cvlinders, rotating discs, torsion of non-circular cross-sections, stress
concentration, thermo-elasticity. (8hrs)

Module-VI

Solutions using potentials energy methods, Introduction to plasticity. (Shrs)

Course Outcomes:

Upon completion of this course, students will be able to:

Understand the deformation behavior of solids under different types of loading.

Find mathematical solutions for simple geometries under different types of loading.
Transform the state of stress from one set of co-ordinate axes to another set of co-
ordinate axes.

4. Apply compatibility equation for different system of strain.

5. Find the mathematical solution for axisymmetric problem.

6. Understand the concept of elasticity and plasticity.
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Tensors have a most useful property in the way that they transform from one basis
(reference frame) to another. Having the tensor defined with respect to one reference
frame, the tensor quantity (components) can be written in any admissible reference frame.
An example of this would be stress defined in principal and non-principal components.
Both representations are of the same stress tensor even though the individual components
may be different. As long as the relationship between the reference frames is known, the
components with respect to one frame may be found from the other.

Only that category of tensors known as Cartesian tensors is used in this text, and defini-
tions of these will be given in the pages that follow. General tensor notation is presented
in the Appendix for completeness, but it is not necessary for the main text. The ten-
sor equations used to develop the fundamental theory of continuum mechanics may be
written in either of two distinct notations; the symbolic notation, or the indicial notation.
We shall make use of both notations, employing whichever is more convenient for the
derivation or analysis at hand but taking care to establish the inter-relationships between
the two. However, an effort to emphasize indicial notation in most of the text has been
made. An introductory course must teach indicial notation to the student who may have
little prior exposure to the topic.

2.1 Scalars, Vectors and Cartesian Tensors

A considerable variety of physical and geometrical quantities have important roles in
continuum mechanics, and fortunately, each of these may be represented by some form

of tensor. For example, such quantities as density and temperature may be specified com-
pletely by giving their magnitude, i.e., by stating a numerical value. These quantities
are represented mathematically by scalars, which are referred to as zero-order tensors. It
should be emphasized that scalars are not constants, but may actually be functions of
position and/or time. Also, the exact numerical value of a scalar will depend upon the
units in which it is expressed. Thus, the temperature may be given by either 68°F, or 20°C
at a certain location. As a general rule, lower-case Greek letters in italic print such as «,
B, A, etc. will be used as symbols for scalars in both the indicial and symbolic notations.

Several physical quantities of mechanics such as force and velocity require not only an
assignment of magnitude, but also a specification of direction for their complete charac-
terization. As a trivial example, a 20N force acting vertically at a point is substantially
different than a 20 N force acting horizontally at the point. Quantities possessing such
directional properties are represented by vectors, which are first-order tensors. Geometri-
cally, vectors are generally displayed as arrows, having a definite length (the magnitude),
a specified orientation (the direction), and also a sense of action as indicated by the head
and the tail of the arrow. In this text arrow lengths are not to scale with vector magnitude.
Certain quantities in mechanics which are not truly vectors are also portrayed by arrows,
for example, finite rotations.

Consequently, in addition to the magnitude and direction characterization, the com-
plete definition of a vector requires the further statement: vectors add (and subtract) in
accordance with the triangle rule by which the arrow representing the vector sum of two
vectors extends from the tail of the first component arrow to the head of the second when
the component arrows are arranged "head-to-tail”.

Although vectors are independent of any particular coordinate system, it is often useful
to define a vector in terms of its coordinate components, and in this respect it is neces-
sary to reference the vector to an appropriate set of axes. In view of our restriction to
Cartesian tensors, we limit ourselves to consideration of Cartesian coordinate systems for
designating the components of a vector.



Atsignifi%ant number of physical quantities having important status in continuum me-
chanics require mathematical entities of higher order than vectors for their representation
in the hierarchy of tensors. As we shall see, among the best known of these are the stress
and the strain tensors. These particular tensors are second-order tensors, and are said to
have a rank of two. Third-order and fourth-order tensors are not uncommon in contin-
uum mechanics but they are not nearly as plentiful as second-order tensors. Accordingly,
the unqualified use of the word tensor in this text will be interpreted to mean second-order
tensor. With only a few exceptions, primarily those representing the stress and strain
tensors, we shall denote second-order tensors by upper-case sans serif Latin letters in
bold-faced print, a typical example being the tensor T. The components of the said tensor
will, in general, be denoted by lower-case Latin letters with appropriate indices: t;;.

Tensors, like vectors, are independent of any coordinate system, but just as with vectors,
when we wish to specify a tensor by its components we are obliged to refer to a suitable
set of reference axes. The precise definitions of tensors of various order will be given
subsequently in terms of the transformation properties of their components between two
related sets of Cartesian coordinate axes.

As a quick notation summary, the International Standards Organization (ISO) conven-
tions for typesetting mathematics are summarized below:

1. Scalar variables are written as italic letters. The letters may be either Roman or
Greek style fonts depending on the physical quantity they represent. The following
examples are a partial list of scalar notation:

(a) a - magnitude of acceleration

(b) v — magnitude of velocity

(¢) r-radius

(d) 8 - temperature or angle depending on context
(e) « — coefficient of thermal expansion

(f) o — principal value of stress

(g) A - eigenvalue or stretch
2. Vectors are written as boldface italic. Examples are as follows:

(a) x — position

(b) v - velocity

(¢) a - acceleration
)

(d) €; - base vector in x; direction

3. Second- and higher-order tensors are designated by uppercase fonts. Additionally,
matrices are shown in the calligraphic form to differentiate them from tensors. Ten-
sors can be represented by matrices, but not all matrices are tensors. In the case
of several well known engineering quantities this convention will not be accommo-
dated. For example, linear strain has been chosen to be represented by e. Here are
some samples of tensor and matrix symbols:

(a
(b

) Q — orthogonal matrix
) E
(c) T - Cauchy stress tensor
)
)

— finite strain

(d) e —infinitesimal strain tensor

(e) R - rotation matrix



1.4 NORMAL AND SHEAR STRESS COMPONENTS

n
Let 7 be the resultant stress vector at point P acting on a plane whose outward
drawn normal is n (Fig.1.4). This can be resolved into two components, one along

n
g

TJ!’

Fig. 1.4 Resultant stress
vector, normal
and shear stress
components

the normal n and the other perpendicular to n. The
component parallel to 2 is called the normal stress
and is generally denoted by o . The component per-
pendicular to n is known as the tangential stress or
shear stress component and is denoted by 7. We
have, therefore, the relation:
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Stress vector T can also be resolved into three

components parallel to the x, y, z axes. If these

where is the magnitude of the resultant stress.

n n n
components are denoted by Tx, Ty, T, we have

al2 n n n
T =T;+T;+T; (1.5)

1.5 RECTANGULAR STRESS COMPONENTS

Let the body B, shown in Fig. 1.1, be cut by a plane parallel to the yz plane. The
normal to this plane is parallel to the x axis and hence, the plane is called the x

plane. The resultant stress vector at P acting on this will be T'. This vector can

be resolved into three components parallel to the x, y, z axes. The component
parallel to the x axis, being normal to the plane, will be denoted by o, (instead of by

X
o). The components parallel to the yand z axes are shear stress components and
are denoted by 7, and 7, respectively (Fig.1.5).



Vi In the above designation, the first
subscript x indicates the plane on
which the stresses are acting and the
second subscript (y or 2) indicates the
direction of the component. For ex-
ample, Tyy is the stress component on
the x plane in y direction. Similarly,
T,, is the stress component on the
X x plane in z direction. To maintain
] consistency, one should have denoted
the normal stress component as 7,,. This
z would be the stress component on the
Fig. 1.5 Stress components on x plane x plane in the x direction. However, to
distinguish between a normal stress and

a shear stress, the normal stress is denoted by o and the shear stress by .
At any point P, one can draw three mutually perpendicular planes, the x plane,
the y plane and the z plane. Following the notation mentioned above, the normal

and shear stress components on these planes are

O, Ty Ty, ON X plane

0 Tyy Ty, ON y plane

O, Ty Ty 0N Z plane

These components are shown acting on a small rectangular element surround-
ing the point Pin Fig. 1.6.
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Fig. 1.6 Rectangular stress components

One should observe that the three visible faces of the rectangular element
have their outward drawn normals along the positive x, y and z axes respectively.
Consequently, the positive stress components on these faces will also be directed
along the positive axes. The three hidden faces have their outward drawn normals



in the negative x, y and z axes. The positive stress components on these taces
will, therefore, be directed along the negative axes. For example, the bottom face
has its outward drawn normal along the negative y axis. Hence, the positive stress
components on this face, i.e., 0, 7, and 7, are directed respectively along the
negative y, x and z axes.

1.6 STRESS COMPONENTS ON AN ARBITRARY PLANE

[t was stated in Section 1.3 that a knowledge of stress components acting on three
mutually perpendicular planes passing through a point will enable one to deter-
mine the stress components acting on any plane passing through that point. Let
the three mutually perpendicular planes be the x, y and z planes and let the
arbitrary plane be identified by its outward drawn normal n whose direction
cosines are n,, n, and n,

1% Consider a small tetrahedron
at P with three of its faces

T, normal to the coordinate
gl * n axes, and the inclined face
having its normal parallel to

% n. Let A be the perpendicu-
-FZ _ / N T lar distance from P to the
L Vs | S * inclined face. If the tetrahe-
= =4 P"T'“" dron is isolated from the
x P A X body and a free-body dia-
gram is drawn, then it will
c be in equilibrium under the
o, action of the surface forces
z and the body forces. The
Fig. 1.7 Tetrahedron at point P free-body diagram is shown
in Fig. 1.7.

Since the size of the tetrahedron considered is very small and in the limit as we
are going to make A tend to zero, we shall speak in terms of the average stresses
over the faces. Let T be ghe !Il‘esugtant stress vector on face ABC. This can be
resolved into components Tx, Ty, T, parallel to the three axes x, yand z On the

three faces, the rectangular stress components are 0. T, T, Oy. Ty, Ty, O, Ty
and 7, If A is the area of the inclined face then

Area of BPC = projection of area ABC on the yz plane

=An,
Area of CPA = projection of area ABC on the xz plane
=An
Y
Area of APB = projection of area ABC on the xy plane
=An,

Let the body force components in x, yand z directions be ¥, %, and y, respectively,

per unit volume. The volume of the tetrahedron is equal to % Ah where h is the

perpendicular distance from P to the inclined face. For equilibrium of the



tetrahedron, the sum of the forces in x, y and z directions must individually
vanish. Thus, for equilibrium in x direction

n 1
ILA-o.An.- 1, An,— 7, An,+ gAh}gr: 0
Cancelling A4,
. |
I, =0,n,+T,n+7,0-3 hy, (1.6)
Similarly, for equilibrium in y and z directions
- .
1
T, =tyn+0,n,+ 1,0, - 3 hy, (L.7)
and ?Ez = Tl + Ty,0l,+ O,11,~ éhyz (1.8)
In the limit as £ tends to zero, the oblique plane ABC will pass through

point P, and the average stress components acting on the faces will tend to their
respective values at point P acting on their corresponding planes. Consequently,
one gets from equations (1.6)-(1.8)

n
T,=no0,+n,7,+n,7,

. ¥ tyx
n

T, =0Tyt 0,0,+ 1,7, (1.9)

. in

T,=n,T,+n,7,+1n,0,

Equation (1.9) is known as Cauchy’s stress formula. This equation shows that
the nine rectangular stress components at P will enable one to determine the stress
components on any arbitrary plane passing through point P. It will be shown in
Sec. 1.8 that among these nine rectangular stress components only six are indepen-
dent. This is because 7, = 7,,, 7,,= 7,, and 7,, = 7, This is known as the equality
of cross shears. In anticipation of this result, one can write Eq. (1.9) as

n

L=nt,+n,7,+n,7,= %nj T (1.10)

where 7 and j can stand for x or yor z and 0, = 7,,, 0,= 7, and 0,= 7,

n
If T is the resultant stress vector on plane ABC, we have

n 2 ﬂ'z H2 H2
Tl =T++T,+T, (1.11a)
If 6, and 7, are the normal and shear stress components, we have
112
ﬂ = oﬁ T 7;2; (1.11Db)

‘n
Since the normal stress is equal to the projection of T along the normal, it is
in n n

also equal to the sum of the projections of its components T, T, and T, along

n. Hence,
n

1 n
o,=nT, +nT, +n,T, (1.12a)



. n . n . i
Substituting for T,, T\, and T, from Eq. (1.9)
G,= N;G,+ n,G,+ n;G,+ 2nn, T, + 2n,n, T, + 20,0, T, (1.12b)

Equation (1.11) can then be used to obtain the value of T,

PRINCIPAL STRESSES

ey

The components of this along the x, y and z axes are

b n n
TX:O-HX, Ty:O-ny, Tz:O-nZ (117)

Also, from Cauchy’s formula, i.e. Eqs (1.9),
n
X =0y N+ T, N, + T, 1,

n
Ty=1,n,+ 0, n,+ Ty, 1,
n
2= Ty, N+ T, N,+ 0,1,
Subtracting Eq. (1.17) from the above set of equations we get
(oy-0) n,+1t,n,+1,n=0
Ty ny+ (0, - 0) n,+ 1, 1,=0 (1.18)
Ty, 0+ T, n,+ (0,—- 0) n,=0
We can view the above set of equations as three simultaneous equations involv-
ing the unknowns r1,, 1, and n, These direction cosines define the plane on which

the resultant stress is wholly normal. Equation (1.18) is a set of homogeneous

equations. The trivial solution is 1, = n, = 11,= 0. For the existence of a non-trivial

solution, the determinant of the coefficients of n1,, n, and 1, must be equal to zero, i.e.

(O‘X—O') Tyy Ty
g (o,—c) oz, |=0 (1.19)
Ty Ty (O‘Z—O')

Expanding the above determinant, one gets a cubic equation in & as

o’ - (0,+ 0,+ 06)06’+(0,0,+0,0,+0,0,~ T4, — T, —T,,) O
(c,0,0,+27,.7,T,, —C 2 —o, 2 —o rz)—O (1.20)
x Yy Tz xy “yz “zx x “yz Vv “xz z “xy/J — .

The three roots of the cubic equation can be designated as &), o, and . It
will be shown subsequently that all these three roots are real. We shall later give
a method (Example 4) to solve the above cubic equation. Substituting any one of

these three solutions in Egs (1.18), we can solve for the corresponding n,, n, and
n,. In order to avoid the trivial solution, the condition.

n§+n}2,+n§=1 (1.21)

is used along with any two equations from the set of Eqs (1.18). Hence, with each
o there will be an associated plane. These planes on each of which the stress
vector is wholly normal are called the principal planes, and the corresponding



stresses, the principal stresses. Since the resultant stress is along the normal, the
tangential stress component on a principal plane is zero, and consequently, the
principal plane is also known as the shearless plane. The normal to a principal
plane is called the principal stress axis.

1.11 STRESS INVARIANTS

The coefficients of 62, oand the last term in the cubic Eq. (1.20) can be written as
follows:

,=0,+0,+0, (1.22)
l,=0.0,+0,0,+ 0.0, to, — 12, — 1
27 MxYy Yz z2x  “xy yz zx
o T o T o3 T
Xy vyt
= + + ¥ (1.23)
Ty Oyl |Tyz Oz |Txe O
L=0.0,0,+21T. 7. 7T, - 0. 1. -0, 15 — 0, T°
3T Yy Yy vz xy “yz “z x “yz v ‘zx z "xy
Oy Ty Tx
Ty % Tk (1.24)
Tox Tyz O,

Equation (1.20) can then be written as

The quantities /,, /, and /; are known as the first, second and third invari-
ants of stress respectively. An invariant is one whose value does not change
when the frame of reference is changed. In other words if X, y, 7, is
another frame of reference at the same point and with respect to this frame
of reference, the rectangular stress competence are oy, 0,,0,. 7y, Ty,
and 7, , then the values of /|, /, and /;, calculated as in Eqs (1.22) - (1.24),
will show that

’ ’ ’
O, + 0,+ 0,=0/+ 0/ + 0,
ie. 11: J11'

and similarly, L=1 and L =1

In terms of the principal stresses, the invariants are
[y, =0,+0,+ 04
[, = 0,0, + 0,04 + 050,
Iy = 0,0,04



OCTAHEDRAL STRESSES

Let the frame of reference be again chosen along ¢,, 0, and o; axes. A plane that
is equally inclined to these three axes is called
an octahedral plane. Such a plane will have n, =
n,= n, Since nw+ nf, + n =1, an octahedral
plane will be defined by n,=n,=n,==% 1/4/3 .
There are eight such planes, as shown in
Fig.1.18.

The normal and shearing stresses on these
planes are called the octahedral normal stress
and octahedral shearing stress respectively.

Substituting n,= n,=n,= +1/4/3 in Eqs (1.33)

and (1.34),
6 -l +0,+0)=1] (1.43)
ot = 3 01+ 0+ 03) = 5 :
3 3
and rt, = é[(o1 ~0)%+ (0,- 0% + (03, - 7)) (1.44a)
or 9¢2, = 2(0, + 0, + 0,)° - 6(0,0, + 0,0, + 0,0)) (1.44b)

oct

or T . = g (F —31,)"? (1.44c)
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Fig. 2.1 (a) Linear strain in x direction (b) linear strain in y direction (c) shear strain
in xy plane
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THE STATE OF STRAIN AT A POINT
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-

To maintain consistency, we could have written

€= Yy €= Y €= Y
but as it is customary to represent the shear strain by ¥ we have retained this
notation. In the theory of elasticity, 1/2y,, is written as e, i.e.

1 B l (?UX 511), B
sh= 7 [—5)/ T | = ey (2.22)
If we follow the above notation and use
Eyx = Expr Eyy = €y €,,=E&,
1(Cu, ou, _1(%u, Uy _
0,=%5|—5>-F5 =0, %“=31 5, 57| "%
2\ éx 2Oy J Y

o ] Ju, Ju, w
72\ 7z Iox XZ

(€ — &)+ eyn, + e,n,= 0
eyt (€, - €n,+e,n,=0
exlly + eyn, + (€, - €n,=0



(e — &) Eyy

e (£, -8

e

Expanding the determinant, we get
e - Jie+ Le-J,=0
where
Jy = Ext €yt €,
Exx Xy

€ £y

Ex Cy Ey

J3= %% Ey G

eZX Zy ZZ

COMPATIBILITY CONDITIONS

eXZ

e,

zx €y (gzz - 8)




First group: We have

) o 2
_ ou, _ c:’lly yo= cou, N C U},
v ox e oy’ voady  Ox

&

Differentiate the first two of the above equations as follows:

A2 3 4
O,  Ou, L (mzx}
- - ~ 2 AxP 3
(wyz (}‘ngz cxey _ cy
; ; 2 ;
2%,  Juy P du,

AxX @}/(QXZ oxly| Ox
Adding these two, we get

a2 A2 A2
>,
: O © 8}’)’ ¢ ‘X
1.e. =~ 3.
8 ox  Ox0y

Similarly, by considering ¢, €, and ¥, and ¢, €, and ¥,, we get two more
conditions. This leads us to the first group of conditions.
2

AL ~2 2L,

CEw Ty T Ty

(ﬁyz o exéy

A2 -2 A2

08y 0%, Oy

) S (2.55)

o7 8yt dyoz

2 A2 2.

06, Oty OYy

oF o7  dzx

Second group: This group establishes the conditions among the shear strains.
We have

3
BUX C Uy

Yo = W-l_ﬁ

_ CA]U), é’uz

sz— oz W

y = cu, . cu,

¥ ox Oz

Differentiating

Ty _ Alu, (3211),
oz cz30y JOzdx
Vyz _ éz”y (5'2112
X oxz COx2y




Alu c°u

ay oxcy Joyoz
Adding the last two equations and subtracting the first

2

-

oy

i ZX Z

- A, ~2
Wyz+0?fﬂ_@V)g/:2 ocu,

-

cx oy 0z cxey

Differentiating the above equation once more with respect to zand observing that

we get,
- (3‘}; O v 3 A2
o yz+,zxin)g/ - OUZ 72(7522
oz\ éx Sy Oz oxéyilz OxOy

This is one of the required relations of the second group. By a cyclic change of
the letters we get the other two equations. Collecting all equations, the six strain
compatibility relations are

2
o & 4
i S (2.56a)

o oxr  Oxay

22 2
Ty Py Ty (2.56b)
fu ] 2 -~y 2 :
oz 0}/2 C?}/G“Z
Ale Ale (3*‘2;/
L —r = 2 (2.56¢)
ox oz ozC0Xx
] ) > 5:?/ 52
O\ D T T | ey (2.56d)
ozZ| O0X oy oz é‘X(}‘}/
- ) c?}/ ér]/ ‘!2
e e B e R Qi (2.56€)
cx| oy oz X (}‘}/(32
) - - aZ
5 (Ory Or oe
%[ == —Oﬁy”] = w (2.56)
cy\ ¢z Jx 2y ox0z

The above six equations are called Saint-Venant's equations of compatibility. We
can give a geometrical interpretation to the above equations. For this purpose,
imagine an elastic body cut into small parallelepipeds and give each of them the
deformation defined by the six strain components. It is easy to conceive that if the
components of strain are not connected by certain relations, it is impossible to
make a continuous deformed solid from individual deformed parallelepipeds. Saint-
Venant's compatibility relations furnish these conditions. Hence, these equations
are also known as continuity equations.



Module Il

3.2 GENERALISED STATEMENT OF HOOKE’S LAW

Consider a uniform cylindrical rod of diameter d subjected to a tensile force P.
As is well known from experimental observations, when P is gradually
increased from zero to some positive value, the length of the rod also in-
creases. Based on experimental observations, it is postulated in elementary
strength of materials that the axial stress ¢ is proportional to the axial strain &
up to a limit called the proportionality limit. The constant of proportionality is
the Young's Modulus E, i.e.

o
€= oOr o= Fe (3.1)

[t is also well known that when the uniform rod elongates, its lateral dimensions,
i.e. its diameter, decreases. In elementary strength of materials, the ratio of lateral
strain to longitudinal strain was termed as Poisson’s ratio v. We now extend this
information or knowledge to relate the six rectangular components of stress to the
six rectangular components of strain. We assume that each of the six independent

components of stress may be expressed as a linear function of the six components
of strain and vice versa.

The mathematical expressions of this statement are the six stress—strain
equations:

= A1 T A€y TasEy T ay)y T a5y y T A VY

Q
|

O, = &y + ApEyy + A€z + uY yy + Aps) yp T 67 &
O,= &BExy T A&y + 387, T By Y 3y + 3357 17 T 3367 (3.2)

Ty = A& T A€y + A3Es + AgY sy T A5y T Y67 &

3
|

= d5)Exy T A5p€yy + As3E5 T A5V yy T A55) T A56) iy

T,o= 16 T A28y T 5362, T gV sy T 57 1z T 667 zx

Or conversely, six strain-stress equations of the type:

Ex = b\lo-x+h20-y+b|30-2+ h4rzy+bl5ryz+ BT (3.3)
g, =...elc
where a;;, ap, by, by - . ., are constants for a given material. Solving

Eq. (3.2) as six simultaneous equations, one can get Eq. (3.3), and vice versa. For
homogeneous, linearly elastic material, the six Eqs (3.2) or (3.3) are known as
Generalised Hooke’s Law. Whether we use the set given by Eq. (3.2) or that given
by Eq. (3.3), 36 elastic constants are apparently involved.



the principal stresses 0'1, 0,, 0; with the three principal strains £, & and g through
suitable elastic constants. Let the axes x, y and z coincide with the principal stress and
principal strain directions. For the principal stress o, the equation becomes

o, = ag, + be, + cg;
where a, b and c are constants. But we observe that b and ¢ should be equal since
the effect of o, in the directions of &, and &,, which are both at right angles to o,
must be the same for an isotropic material. In other words, the effect of o in any
direction transverse to it is the same in an isotropic material. Hence, for o, the
equation becomes

o, = ag, + b(g, + &)

(a-b)g + blg, + & + &)

by adding and subtracting be,. But (g, + &, + &) is the first invariant of strain J,
or the cubical dilatation A. Denoting b by A and (a - b) by 2u, the equation for o,

becomes

o, = AA + 2ug (3.4a)
Similarly, for o, and o; we get

0, = AA + 2uE, (3.4b)

0, = AA + 21, (3.4c)

The constants A and u are called Lame’s coefficients. Thus, there are only two
elastic constants involved in the relations between the principal stresses and
principal strains for an isotropic material. As the next sections show, this can be
extended to the relations between rectangular stress and strain components also.

BULK MODULUS



Observing that

oytoyto,=h=0+0,+0y (first invariant of stress),
and

Eyp TEyy ey == 8+ 6 (first invariant of strain),

Eq. (3.13a) can be written in several alternative forms as

O, + 0, + 0, = 31+ 2u)A (3.13b)
Oy + 0y + 0y = 34+ 2L)A (3.13c)
I, =(BA+2u)/, (3.13d)

Noting from Eq. (2.34) that A is the volumetric strain, the definition of bulk
modulus K is

Ko pressure _P (3.14a)
volumetric strain A

If 0, = 0, = 03 = p. then from Eq. (3.13b)
3p=(BA+2u)A
3L —(32+2
or 0 (34 + 2u)
and from Eq. (3.14a)
K= %(3,“ 20) (3.14b)

Thus, the bulk modulus for an isotropic solid is related to Lame’s constants
through Eq. (3.14b).



3.6 YOUNG’S MODULUS AND POISSON’S RATIO
From Eq. (3.13b), we have

_ Ot o+ 03

(34 +2p)
Substituting this in Eq. (3.4a)
A
o, = m(t)’l + oy +O'3)+2/1€1

A+ p J
e = - + 3.15
. a7 T 2 o) 19
From elementary strength of materials
1

where £ is Young’'s modulus, and v is Poisson’s ratio. Comparing this with
Eq. (3.15),

u(31+2 -
po MBAT2Y) 4 53.16)

(A+p) 2(A+ p)
3.7 RELATIONS BETWEEN THE ELASTIC CONSTANTS

In elementary strength of materials, we are familiar with Young's modulus £,
Poisson’s ratio v, shear modulus or modulus of rigidity G and bulk modulus K.
Among these, only two are independent, and £ and v are generally taken as the
independent constants. The other two, namely, G and K, are expressed as

_£E g _E
2(1+v)’ 3(1-2v)
[t has been shown in this chapter, that for an isotropic material, the 36 elastic
constants involved in the Generalised Hooke’s law, can be reduced to two inde-
pendent elastic constants. These two elastic constants are Lame’s coefficients
A and p. The second coefficient it is the same as the rigidity modulus G. In terms
of these, the other elastic constants can be expressed as

(3.17)

B /u(31+2,u) B 1
E_W’ V= 2(2+ u)
(34 +2u) _ B VE
K_T’ G=yu, A= (1+V)(1_2V), (3.18)

[t should be observed from Eq. (3.17) that for the bulk modulus to be positive,
the value of Poisson’s ratio v cannot exceed 1/2. This is the upper limit for v.
For v=1/2,

3G=F and K=o



UNIQUENESS
5.15 KIRCHHOFF'S THEOREM

In this section, we shall prove an important theorem dealing with the uniqueness of
solution. First, we observe that the applied forces taken as a whole work on the body
upon which they act. This means that some of the products F; 6, etc. may be negative
but the sum of these products taken as a whole is positive. When the body is elastic,
this work is stored as elastic strain energy. This amounts to the statement that U is an
essentially positive quantity. If this were not so, it would have been possible to extract
energy by applying an appropriate system of forces. Hence, every portion of the body
must store positive energy or no energy at all. Accordingly, U will vanish only when
every part of the body is undeformed. On the basis of this and the superposition
principle, we can prove Kirchhoff's uniqueness theorem, which states the following:

An elastic body for which displacements are specified at some points and
forces at others, will have a unique equilibrium configuration.

Let the specified displacements be J;, ,, . . ., 8, and the specified forces be F/,
F, ... F,. Itis necessary to observe that it is not possible to prescribe simulta-
neously both force and displacement for one and the same point. Consequently,
at those points where displacements are prescribed, the corresponding forces are

F F;, ..., F and at those points where forces are prescribed, the correspond-
ing displacement are 6., J; . ..., &, . Let this be the equilibrium configuration. If
this system is not unique, then there should be another equilibrium configuration
in which the forces corresponding to the displacements 6, 6, . . ., 0, have the
values f", F, ..., I and the displacements corresponding to the forces £, F,
..., F, have the values ¢!, &/, ..., J,. We therefore have two distinct systems.
First System  Forces F, B, .,F, FE F, ..., F,
Corresponding o, 0,.... O, '(5‘3’, 6; R
displacements
Second System Forces K, FE, ., F F, F,... F,
Corresponding
displacements o, 0,.... O, '55”, o .., 5;]’

We have assumed that these are possible equilibrium configurations. Hence, by
the principle of superposition the difference between these two systems must
also be an equilibrium configuration. Subtracting the second system from the first,
we get the third equilibrium configuration as

Forces (R-R)V(B-F)..(E-F) O, 0. 0
Corresponding
displacements 0, 0 ceey 0 (6e=67), (6-67), ..., (6,-5,)



The strain energy corresponding to the third system is U= 0. Consequently the
body remains completely undeformed. This means that the first and second
systems are identical, i.e. there is a unique equilibrium configuration.

SUPERPOSITION

Hooke’s Law. In this chapter, however, we shall state Hooke's law as appli-
cable to the elastic body as a whole, i.e. relate the complete system of forces
acting on the body to the deformation of the body as a whole. The law asserts
that "deflections are proportional to the forces which produce them’. This is a
very general assertion without any restriction as to the shape or size of the
loaded body.

In Fig. 5.1, a force F; is applied at
point 1, and in consequence, point 2 un-
dergoes a displacement or a deflection,
which according to Hooke's law, is pro-
portionate to /). This deflection of
point 2 may take place in a direction
which is quite different from that of £].
If D, is the actual deflection, we have

Dz = k21F1

where k,, is some proportionality
constant.

When Fj is increased, D, also in-
creases proportionately. Let d, be
the component of D, in a specified

Fig. 5.1 Elastic solid and Hooke's law ~ direction. If 6 is the angle between
D, and d,

d, =D, cos@ = k,; cosO F,

If we keep 6 constant, i.e. if we fix our attention on the deflection in a specified
direction, then

dy = ay F)
where a,, is a constant. Therefore, one can consider the displacement of point 2
in any specified direction and apply Hooke’s Law. Let us consider the vertical

component of the deflection of point 2. If d, is the vertical component, then
Hooke's law asserts that

d, = ay F (5.1)



where a,; is a constant called the “influence coefficient” for vertical deflection at
point 2 due to a force applied in the specified direction (that of F}) at point 1. If F;
is a unit force, then a,, is the actual value of the vertical deflection at 2. If a force
equal and opposite to £ is applied at 1, then a deflection equal and opposite to
the earlier deflection takes place. If several forces, all having the direction of F},
are applied simultaneously at 1, the resultant vertical deflection which they pro-
duce at 2 will be the resultant of the deflections which they would have produced
if applied separately. This is the principle of superposition.

Consider a force F, acting alone at point 3, and let d; be the vertical compo-
nent of the deflection of 2. Then, according to Hooke's Law, as stated by Eq. (5.1)

dy = a3k (5.2)

where a, is the influence coefficient for vertical deflection at point 2 due to a
force applied in the specified direction (that of F3) at point 3. The question
that we now examine is whether the principle of superposition holds true to
two or more forces, such as F| and F;, which act in different directions and at
different points.

Let £, be applied first, and then F;. The vertical deflection at 2 is

dzz 321F1+512'3F3 (53)



where a,, may be different from a,,. This difference, if it exists, is due to the
presence of £, when F; is applied. Now apply —F]. Then

= ay F) + .aégFa — ay F
a, may be different from a,,, since F; is acting when —F is applied. Only F3 is
acting now. If we apply —F5, the deflection finally becomes
dy = ay Iy + aply— ay k) — apky (5.4)

Since the elastic body is not subjected to any force now, the final deflection given
by Eq. (5.4) must be zero. Hence,

o ' _
ay by + apty— ay Fy — ayly=0

ile. (321 - aé]) Fl = (323 - aéS) F3

’ r
a, —a ay5 — a
or 21 — 1 _ a3 — dy3 (5.5)

3 R
The difference a,; — a,, if it exists, must be due to the action of F;. Hence, the

left-hand side is a function of F; alone. Similarly, if the difference a,;— aj, exists,

it must be due to the action of F| and, therefore, the right-hand side must be a
function £ alone. Consequently, Eq. (5.5) becomes

Ay = dy _ Ay — dp -k (5.6)

F k d;

where £ is a constant independent of F; and F;. Hence

dyy = ay — kF)
Substituting this in Eq. (5.3)
dy= ay Fy + ayl'y — kF\ I
The last term on the right-hand side in the above equation is non-linear, which is
contradictory to Hooke's law, unless k vanishes. Hence, k= 0, and
ay= ay and  ay = a,

The principle of superposition is, therefore, valid for two different forces acting at
two different points. This can be extended by induction to include a third or any
number of other forces. This means that the deflection at 2 due to any number of
forces, including force F, at 2 is



Module 4
1.25 THE PLANE STATE OF STRESS

If in a given state of stress, there exists a coordinate system Oxyz such that for
this system

o,=0, 7, =0, 7,=0 (1.57)

then the state is said to have a “plane state of stress” parallel to the xy plane. This
state is also generally known as a two-dimensional state of stress. All the forego-
ing discussions can be applied and the equations reduce to simpler forms as a
result of Eq. (1.57). The state of stress is shown in Fig. 1.24.

AC
y
A Oy
ol
17 [N R T
| i T Xy
o, b o,
< -
] |
1 |
|
rxl’/’)““,_:_, ————————— O, Oy
- TXy B S
Y O'y Y O'V

(a) (b)

Fig. 1.24 (a) Plane state of stress (b) Conventional representation
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Fig. 1.25 Normal and shear stress components on an oblique plane

n

Ty =o0,cos 0+ 1,,sin 6
n

Ty =o0,sin 6+ 7,,cos 6 (1.58)
n

T: =0

The normal and shear stress components on this plane are from Eqs (1.11a)
and (1.11b)

2 . 2 .
0 =0,cos” 6+ 0,sin” 6 + 27, sin 6 cos 6

+ —
T % T % o520 + 1, 5in 20 (1.59)
2 2
2 ae 2
and =T, +T, -c
6, —0C
or t=—>_ 2 sin 26 + 7, cos 20 (1.60)
The principal stresses are given by Eq. (1.29) as
' ) 1/2
c.+o c,—C
0. 0, = —— yi“ > J"J +r§y] (1.61)
0-3 = 0
The principal planes are given by
() the zplane on which o3 = 6,=0 and
(i) two planes with normals in the xy plane such that
2t
tan 2¢ = ——= (1.62)
c,—C

y
The above equation gives two planes at right angles to each other.

If the principal stresses o, 0, and &, are arranged such that o, = 0, = &3, the
maximum shear stress at the point will be

o, — O
; 01703

max = (1.63a)



In the xy plane, the maximum shear stress will be

1
Thax = E (O-l ) )

and from Eq. (1.61)
1/2

2.13 PLANE STATE OF STRAIN

If, in a given state of strain, there exists a coordinate system Oxyz such that for
this system
£,=0, %,=0, y,=0 (2.48)
then the state is said to have a plane state of strain parallel to the xy plane. The
non-vanishing strain components are &, £y and Yoy
If PQis a line element in this xy plane, with direction cosines n,, n,, then the
relative extension or the strain &p is obtained from Eq. (2.20) as

2 2
EpQ = Exy Iy T &y 1, + Vi 1, 11,

or if P() makes an angle 6 with the x axis, then

£po = €xx cos? 9+€ny sin® 9+%yw sin 26 (2.49)

If £ and &, are the principal strains, then

) ,1/2
£, tE Ey — & ¥
otepmfmaf (wf] o

Note that &, = €, is also a principal strain. The principal strain axes make angles ¢
and ¢ + 90° with the x axis, such that
tan 2¢=—9 2.51)
Ex &y
The discussions and conclusions will be identical with the analysis of stress if we

. . 1
use £, £, and.szz in place of o, 0, and o, respectively, and e, = 5 Yo
1

e, = e, = = ¥, in place of

vz % Y €x= 5 and 7,, respectively.

Txy ryz



Consider an axisymmetric body as shown in Fig. 1.31(a). The axis of the
body is usually taken as the z axis. The two other coordinates are r and 6,
where 6 is measured counter-clockwise. The rectangular stress components at
a point P(r, 6, 2) are

O,, Oy, O,, Ty, Tg,and T,

e o,
W Tl T
-~ b >
\: S \I‘\ -
.  l
< A ‘l Tz | T
O |
Toz ™ ""'o'r
(b)

Fig. 1.31 (a) Cylindrical coordinates of a point
(b) Stresses on an element

These are shown acting on
the faces of a radial element
at point P in Fig.1.31(b).
o, O, and o, are called the
radial, circumferential and
axial stresses respectively. If
the stresses vary from point
to point, one can derive the
appropriate differential equa-
tions of equilibrium, as in
Sec. 1.26. For this purpose,
consider a cylindrical ele-
ment having a radial length
Arwith an included angle A6
and a height Az isolated from
the body. The free-body dia-
gram of the element is shown
in Fig.1.32(b). Since the ele-
ment is very small, we work
with the average stresses act-
ing on each face.

The area of the face aa'd’d
is r A@ Az and the area of face
bbidcis (r+ An A8 Az The
areas of faces dec’d’ and abb' ¢

are each equal to Ar Az

The faces abcd and a’b'c’d have each an area ( r+ %) A6 Ar. The average

stresses on these faces (which are assumed to be acting at the mid point of eace

face) are
On face aa’d d
normal stress o,

tangential stresses 7., and 7,4
On face bb/'c’c

oo,
normal stress o, + —L Ar
or



nlldl)’alf_‘: UL RJLLTDOD T

(b)

Fig. 1.32 (a) Geometry of cylindrical element (b) Variation of stresses across faces

-

A
tangential stresses T+ Tz Ar and r o+ “lor Ar
rz (;;‘I,. e (91,_

The changes are because the face bb'c’c is Ar distance away from the face aa’d'd.
On face dec’d
normal stress o
tangential stresses T,,and T,
On face abb'a

oo,
normal stress 0, + —Z AQ
22

- )
CTrg cr

tangential stresses 7,, + AQand 1,, + 22 AB

-

The changes in the above components are because the face ablb’a is separated by
an angle A6 from the face dec’d.
On face ab'dd
normal stress o,
tangential stresses 7., and 17,,
On face abcd

2
normal stress 0, + —Z Az
oz

-

. or
tangential stresses 7, + TIZZ Azand 7, +

Let v, v, and ¥, be the body force components per unit volume. If the element is
in equilibrium, the sum of forces in r, 8 and z directions must vanish individually,
Equating the forces in rdirection to zero,

-
CTg,

-

Az

L/

-

or

Lz AZ] [1"%—%] AOAr

geg
[O} + & Ar] (r+Ar)A9AZ+[rIZ t—
c



-0, rA0Az—-1, (1"+ %) AOAr - o, sin ATH ArAz

— 7, COS ATH AI“AZ—(O‘G + 0?-9 A(JJ sin ATH ArAz

oo
+ (Tré? + 0;;9 A()J COSATQAI"AZ-F 7y (1"+ %) AOArAz=0

Cancelling terms, dividing by AB Ar Az and going to the limit with A8, Arand Az,
all tending to zero

2o or or
r—L+r—Z+-% 65 —c,+ry,=0
ar cz a0
o, Or 1 cr c.—a
or Ly fz 710, 7r "0, 7, =0 (1.67)

°or Jz r dv r
Similarly, for equilibrium in zand 6 directions, we get

or oo or T
e D ) - A (1.68)
or 72z r o0 r
or or oo 2T
and 0 4~ 0z 1 0 4219 4y =0 (1.69)
or °2z r o0 r

1.30 AXISYMMETRIC CASE AND PLANE STRESS CASE

If an axisymmetric body is loaded symmetrically, the stress components do not
depend on 6. Since the deformations are symmetric, 7, and 7,, do not exist and conse-
quently the above set of equations in the absence of body forces are reduced to

oo or G.—C
_ r ,,IZ + r A =0
or cZ r
COlrg co, Ty =0
St ot =
cr 4 I

A sphere under diametral compression or a cone under a load at the apex are
examples to which the above set of equations can be applied.

If the state of stress is two-dimensional in nature, i.e. plane stress state, then
only 0,, 0y, T,9, ¥, and 7, exist. The other stress components vanish.These non-
vanishing stress components depend only on 6 and r and are independent of z in
the absence of body forces. The equations of equilibrium reduce to

do, 10ty 0,-0p

or r o8 r =0
(1.70)

Oty 1 doy 27,9 0

or r 06 r



Module 5:

8.2 THICK-WALLED CYLINDER SUBJECTED TO
INTERNAL AND EXTERNAL PRESSURES—LAME'S
PROBLEM

Consider a cylinder of inner radius a and outer radius b (Fig. 8.3). Let the cylinder
be subjected to an internal pressure p, and an external pressure p,. It is possible
to treat this problem either as a plane stress case (o,=0) or as a plane strain case
(e,=0). Appropriate solutions will be obtained for each case.

>
=€

Py
ARRARARZRARR R AT

7/>/ *++++++++++++++i
/( X ___Pa

P * VY Y Y Y Y Y Y Y Y Y Y yyy

N
SRR R E

(b)

0
o

(a)

Fig. 8.3  Thick-walled cylinder under internal and external pressures



Cylinder Subjected to Internal Pressure In this case p, = 0 and p, = p. Then
Egs (8.11) and (8.12) become

2 27

__pa b
O",.—bz_az [1—1—2] (813)

2 2

__pa b
O'Q—bz_az [14‘?} (814)

These equations show that o, is always a compressive stress and o, a tensile
stress. Figure 8.4 shows the variation of radial and circumferential stresses across
the thickness of the cylinder under internal pressure. The circumferential stress is
greatest at the inner surface of the cylinder, where

plat+ b
(0) =—£Jz — ) (8.15)

Fig. 8.4 Cylinder subjected to internal pressure

Hence, (0,) . is always greater than the internal pressure and approaches this
value as b increases so that it can never be reduced below p, irrespective of the
amount of material added on the outside.

Cylinder Subjected to External Pressure In this case, p,= 0and p,= p. Equations
(8.11) and (8.12) reduce to

vP 2
I A b 2
o= [1—17J (8.16)
2 2
S bzp_baz [1 ; f_zJ (8.17)

The variations of these stresses across the

thickness are shown in Fig. 8.5. If there is

no inner hole, i.e. if a= 0, the stresses are

Fig. 8.5 Cylinder subjected to uniformly distributed in the cylinder with
external pressure O,= 0, = —p.




Plane Strain in thick cylinder

p.a —pyb°  p,—p, &l

O,= B 2 P_ 2 2
o _ Pl pimpal’
0 B2 _ g2 pe_ g2 2
2 2

Pp@” = Pab
o,= 2V R

TORSION OF GENERAL PRISMATIC BARS-SOLID
SECTIONS
On the bhasis of the solution of circular shafts, we assume that the cross-

sections rotate about an axis; the twist per unit length being 6. A section

at distance z from the fixed end will, therefore, rotate through 6z A point P(x, y)

in this section will undergo a displacement rfz, as shown in Fig. 7.3. The compo-
nents of this displacement are

u,=—rfzsin f

u,= rézcos 8

o

Fig. 7.3  Prismatic bar under torsion and geometry of deformation

From Fig. 7.3(c)

sin B=2 and cos = X
r r



In addition to these x and y displacements, the point Z may undergo a displace-
ment u, in z direction. This is called warping; we assume that the z displacement
is a function of only (x, y) and is independent of z This means that warping is the
same for all normal cross-sections. Substituting for sin B and cos B, St. Venant's
displacement components are

u,=-0yz (7.6)
u, = 0xz
u,= 0y(x, y) @7

v (x, y) is called the warping function. From these displacement components,
we can calculate the associated strain components. We have, from Eqs (2.18)
and (2.19),

ou cu ou
€= 5. &,=—>—. £,= =7
X e ay oz
du, 7u, au,  ou, Ju, Ou,
Y= > t=" V=t 5. 'x=F3.,1T 3
oy Ox °z Oy ’z Ox
From Eqs (7.6) and (7.7)
Ex=E€y =&, ny_o
oy
;5,2—9( t +X} (7.8)
oy

From Hooke’s law we have

vE E
R (T N (R R prvis

_ vE E
S R e gl

_ vE E
=i a2 T Ty oz

T}g/ = G}/Xy’ T_}’Zz GYJ/Z’ T:ZX= G}IZX
where A=g,+¢E,+¢E,
Substituting Eq. (7.8) in the above set

0,=0,=0,=7,=0

T, =G8 (% + X} (7.9)



2
TZX=GO(;;— J

The above stress components are the ones corresponding to the assumed dis-
placement components. These stress components should satisfy the equations of
equilibrium given by Eq. (1.65), i.e.

ox Jdy 0Oz

or oo or

e | (7.10)
ox cy Oz
or,, N (erz oo, -0

’cx oJy Jz
Substituting the stress components, the first two equations are satisfied identi-
cally. From the third equation, we obtain

~2 A2
G@(” LA "”}:0

X Oy
Py Py
ie. L+ =Viy=0 (7.11)
X Oy

Hence, the warping function y is harmonic (i.e. it satisfies the Laplace equation)
everywhere in region R [Fig. 7.3(b)].

Now let us consider the boundary conditions. If F, /-, and £ are the compo-
nents of the stress on a plane with outward normal n (n,, n,, n,) at a point on the
surface [Fig. 7.4(a)], then from Eq. (1.9)

0,0+ 10, Ty, + 1, Ty, = F,

ny Ty+n,0,+0,7,=F (7.12)
Ny Ty, +n,T,+n,0,= F,

Fig. 7.4 Cross-section of the bar and the boundary conditions



In this case, there are no forces acting on the boundary and the normal n to the
surface is perpendicular to the zaxis, i.e. n,=0. Using the stress components from
Eq. (7.9), we find that the first two equations in the boundary conditions are
identically satisfied. The third equation yields

d _, W\ =
Gg(a’x anX+ G9(§y+ xjn},_o
From Fig. 7.4(b)
n, = cos (n X):ﬂ n,= cos (ny):—.@ (7.13)
* ’ ds= 7 ’ ds
Substituting
Sy _ N\ _(Sy . |dx_ 7.14
[(3}{ “V}ds (é‘y+X)ds 0 (7.14

Now coming to the moment, referring to Fig. 7.4(a) and Eq. (7.9)
I'=1[(r,x- 1, dxdy
R

G@j}g[xz +)/2+X§y yéxjdxdy

Writing J for the integral

B oy Oy
J_{Ij;(xz+y2+x(},y y(},XJ dx dy

we have T'=GJo

TORSION OF CIRCULAR AND ELLIPTICAL BARS



(i) The simplest solution to the Laplace equation (Eq. 7.11) is
V¥ = constant = ¢ (7.29)
With v = ¢, the boundary condition given by Eq. (7.14) becomes

dy dx

“Va’s s =0
d X+y _
or a’s 2
ie. X + y* = constant

where (x, y) are the coordinates of any point on the boundary. Hence, the bound-
ary is a circle. From Eq. (7.7), u,= 6c. From Eq. (7.16)

([ 02+ dxdy=1,

the polar moment of]inertia for the section. Hence, from Eq. (7.17)
I'=GLe
or 0= L[
P
lin

Therefore, u,=0c= <

which is a constant. Since the fixed end has zero u, at least at one point, u,is zero
at every cross-section (other than rigid body displacement). Thus, the cross-
section does not warp. The shear stresses are given by Eq. (7.9) as

Ix

T,=GOx= —

. L
Ty =— GOy=-%
P

Therefore, the direction of the resultant shear 7 is such that, from Fig. 7.6

tan o = Ti: GOx =_X

T GOy v v

Y i

oLy
N

Fig. 7.6 Torsion of a circular bar

Hence, the resultant shear is perpendicular to the radius. Further



2 2 .Tz(XZ‘F}’Z)

2 _ _
TO= T, 47, = >
[p

or T:.Q
2

where r is the radial distance of the point (x, y). Thus, all the results of the

elementary analysis are justified.

(ii) The next case in the order of simplicity is to assume that

v = Axy (7.30)
where A is a constant. This also satisfies the Laplace equation. The boundary
condition, Eq. (7.14) gives,

(Ar- 9L~ (e 9 L =
S

ds
'dy dx
A-1)-2L -x(A+1)— =0
or ya-1)— -xld4+1)—
- dx a2y _
ie. (A+1) 2X$ (4—1) Zyds 0
o =
or %[(/Hl)xz—(/l—l)yz]—()
which on integration, yields
(1+ A4) ¥ (1 - A) y* = constant (:31)
This is of the form
i.{.i =1
a* I

These two are identical if

a _1-A

e 1+ A

.bz—az

or A= ———
b + a°

Therefore, the function

b — 3°



represents the warping function for an elliptic cylinder with semi-axes a and b

under torsion. The value of J, as given in Eq. (7.16), is

J='jj (2 + 3 + A¥ - A dx dy

A+1J'J'X2dxdy+ A) [[ ¥ dx dy
=(A+1) [+ (1-A) [

3 3
Substituting /, = zra4b and [, = Ei b , one gefts

| za’h’
at+ I
Hence, from Eq. (7.17)

' 3
T=GJo=Go ”bg
a“+b
2 2
_Tra+b
or 0= C 5

The shearing stresses are given by Eq. (7.9) as

=G0 X+

dy
2 2 (p2_ 2
a+b b -a
=T +1] x
ra’b’® (b2+az J
_ 2Ix
zab
and similarly,
| 2Ty

zx 3
wab

(7.32)

(7.33a)

(7.33b)



The resultant shearing stress at any point (x, y) is

1/2 oT 1/2

2 2 4 4

’c=[z' +7 ] = [bx?+a yz] (7.33¢)
yz Zx ﬂ_a3b3

To determine where the maximum shear stress occurs, we substitute for x* from

i2+g2—2=1, or fzaz(l—yz}

a i

giving T= 253 [a°b* + a° (a° - 1) y)'°
za’b
Since all terms under the radical (power 1/2) are positive, the maximum shear

stress occurs when y is maximum, i.e. when y = b. Thus, t,,, occurs at the ends of
the minor axis and its value is

2T (a*h2)V2 = 2T

T
zah’ rab’

(7.34)
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2 2




TORSION OF EQUILATERAL TRIANGULAR BAR

Consider the warping function

w=A() - 34y (7.35)
This satisfies the Laplace equation, which can easily be verified. The boundary
condition given by Eq. (7.14) yields

(—ﬁAxy—yj% _ (3A4)% - 3A% +X)%{ )
S

s
w _ ax _

or y(6Ax+1) e (3A4)" - 34X + x) s 0

e g(SAxyz At deel ) =0

Therefore,

ABx? - ¥) +% x%% P=b (7.36)
. 1 2a’
where b is a constant. If we put A= - 5a and b= +=

Eq. (7.36) becomes
1 1 2
“%a (Bxy - X)) +§ Z + ) -3 4 =0

or (X—\/gy+ 2a) (x+ \/§y+ 2a) (x-a) =0 (7.37)



Equation (7.37) is the product of the three equations of the sides of the triangle
shown in Fig. 7.8. The equations of the boundary lines are

Fig. 7.8  Cross-section of a triangular bar and plot of T,,, along x-axis

x-a=0 onCD
X - \/§y+23=0 on BC

X+ \/_y+2£z=0 on BD
From Eq. (7.16)

J= [ 5 A3 =3 )= y(-6) [ axay

='j8/§a dyji/Ey—Za [XZ + J/Z + A)((Syz - 3X2) - AY(—GX)/)} dx
+-Ia\/§a dyﬁﬁ%za [XZ + ¥+ Ax(?)y‘z —SXZ) - Ay(—ﬁ,\y)} dx

943 4.3
23 -3y (7.38)



Therefore,

- L _5 T
0= GJ 3 (7.39)
I, is the polar moment of inertia about 0.

The stress components are

T,= G@( _ +X}
oy

=G0 s o) (.40
and T, = G()( (;l';— J
_ '% (x-a) (7.41)

The largest shear stress occurs at the middle of the sides of the triangle, with a
value

¢ = 3G0a (7.42)

e 2

At the corners of the triangle, the shear stresses are zero. Along the x-axis, 7,, =0
and the variation of 7,, is shown in Fig. 7.8. 7, is also zero at the origin 0.

TORSION OF RECTANGULAR BARS
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Uur equations are, as before,

-2 ~2
(Jy/_l_al,uzo
X Ay

over the whole region R of the rectangle, and

(Ow—y)fyx+(%+ X)H},,=U

ox

on the boundary. Now on the boundary lines x= +aor AB and CD, we have n,= +1
and n,= 0. On the boundary lines BC and AD, we have n,= 0 and n,= 1. Hence,
the boundary conditions become

-

0:'” =y on Xx==+a
ox

N _ _
- =_x on =+h
ay Y

These boundary conditions can be transformed into more convenient forms if we
introduce a new function y;, such that

Yv=X=-w

In terms of y;, the governing equation is

~2 ~2
o c
v | ¥ 0

X Ay

over region R, and the boundary conditions become

o
&:0 on x==+a
X

% =2x on y==b
cy

It is assumed that the solution is expressed in the form of infinite series

V= ZO Xn (X) K} ()/)
where X and Y, are respectively functions of x alone and y alone. Substitution
into the Laplace equation for y; yields two linear ordinary differential equations
with constant coefficients. Further details of the solution can be obtained by
referring to books on theory of elasticity. The final results which are important are
as follows:
The function / is given by

J=Ka’h



STRESS CONCENTRATION

While analysing the stresses induced in members subjected to tension, compres-
sion, torsion, and bending, it is generally assumed that members do not have
abrupt changes in their cross-sections. In the case of a tapered member under
tension or compression, the cross-section changes uniformly. But, abrupt changes
in the cross-sections of load-bearing members cannot be avoided. Shafts sub-
jected to torsion will have shoulders to take up thrusts, and key-ways for pulleys
and gears. Oil grooves, holes, notches, etc., are common. In such cases, the
analysis of stresses and strains become complicated. Elementary equations de-
rived under the assumption of no abrupt changes in the geometry of the section
are no longer valid. Sectional discontinuities are called stress raisers, and the
distribution of stresses in the neighbourshood of such regions are higher than in
other regions. They are called regions of stress concentration. Generally, stress
concentration is a highly localized effect. Figures 12.1(a) and (b) show members
with stepped cross-sections under tension and torsion respectively. Let the mem-
bers be circular in their cross-sections. In the case of the member under tension.
let A,, 4,, and A, be respectively the cross-sectional areas of the parts 4, B, and C.
If P 1s the axial tensile force, the stresses in the parts according to

. P P P L
elementary analysis are PR and 4, However, these values are valid in re-

gions for removed from sectional discontinuities including the region where the
load P 1s applied. The corners where the discontinuities occur are regions of
stress concentration. These are shown by dots. Similarly, in the case of the tor-
] , Tr Tr
sion member, the shear stresses by elementary analysis are 1, and E»Where I,
and [, are the polar moments of inertia of the parts 4 and B. As before, these
average stress values are valid in regions far removed from geometrical
discontinuities. At points of discontinuities and nearabout, the stress values
are high.

MEMBERS UNDER TENSION



Figure 12.2 shows a two-dimensional member having two semi-circular grooves
and subjected to tensile loading.

The distribution of normal stresses across the section mn 1s shown qualita-
tively in the figure. At points m and n, the stress magnitudes are high and they
fall rapidly to a uniform value as shown. Ignoring stress concentration, the aver-

age or the nominal stress across the section mn 1s

o o = cht ___ob
0 T T T 0 0 (b—2r)r (b-2r)
where b is the width and 7, the thickness of the
plate. At points m and »n, the stresses are maxi-
mum. and let their values be o, ,.The
ratio of 0, to the nominal or average stress G,

\T & Tf .l, 1s called the stress-concentration factor K i.e.,
jm p \_ 2r Kr _ T ax _ O max (b—2r) )

T Oy cb
< b >

The subscript 7 in K. represents that this stress
concentration factor is obtained theoretically or
experimentally and does not depend on the me-
chanical properties (within the elastic limit) of

’ ,L l, l, ) the plate material. Sometimes, instead of
o using the area across mn, the area away from
Fig. 12.2 Plate with discontinuity 1s used to calculate the nominal
semicircular stress. In the present case, this will be
grooves v obt _
O b
and K' _ Omax
L =
o)

The case of a very wide plate with hyperbolic grooves has been solved theo-
retically and the solution shows that the stress concentration factor near the
roots of the grooves can be represented approximately by the formula

K, = 0.82i+1.2—0.1 (@)
{087,

In the case of a circular member of large diameter with hyperbolic grooves and
subjected to tension, the maximum stress occurs again at the bottom of the grooves.
The stress concentration factor is given by



K, = 1f().5%+0.85 + 0.08 (b)

Comparing Eq. (a) with Eq. (b), it is seen that the stress concentration factor in the
case of a cylinder under tension is smaller than the stress concentration factor for

a plate under tension. For example, with % = 10 in both cases, K,=2.93 in the

case of the plate, and K,= 2.5 in the case of the cylinder.

MEMBERS UNDER TORSION

3
Tiax — md )
7, 16T

K, =

MEMBERS UNDER BENDING

d

?+0.85

K. =0.08+ \/0.355

NOTCH SENSITIVITY

It was stated earlier in this chapter that when the sectional geometry of a member
under stress has geometrical discontinuities like grooves, fillets, holes, keyways,
etc., at these zones, stresses higher than the nominal stress values are induced. The
value 0, of stress at these highly stressed zones was obtained by multiplying the
nominal stress value 6, by a factor K, called the stress concentration factor; 1.e.,

O-max = Kr GO (a)
However, there are some materials that are not very sensitive to notches, grooves,

etc. For such materials, a lower stress concentration factor can be used for design
purpose. In line with Eq.(a), for these materials, the maximum stress value is

Omax = K5 0y (b)
where K is a reduced value of K, and G, 1s the nominal stress value. Norch
sensitivity q is defined by the equation

K, -1
9= % 1 (12.15)

¢




Thermal Stresses

It 1s well known that changes in temperature cause bodies to expand or contract.
The increase in the length of a uniform bar of length L, when its temperature is
raised from 7 to 7, 1s

AL=oL (T 1))
where « is the coefficient of thermal expansion. If the bar is prevented from
completely expanding in the axial direction, then the average compressive stress
induced 1s

o=F AL
L

where E is the modulus of elasticity. Thus, for complete restraint, the thermal
stress needed 1s

o=—0kE (T—-1,)
where the negative sign indicates the compressive nature of the stress. If the
expansion is prevented only partially, then the stress induced i1s

o=—kaE (T-T,)

THERMOELASTIC STRESS-STRAIN RELATIONS

Consider a body to be made up of a large number of small cubical elements. If the
temperatures of all these elements are uniformly raised and if the boundary of the
body is unconstrained, then all the cubical elements will expand uniformly and all
will fit together to form a continuous body. If, however, the temperature rise is not
uniform, each element will tend to expand by a different amount and if these
elements have to fit together to form a continuous body, then distortions of the
elements and consequently stresses should occur in the body.

The total strains at each point of a body are thus made up of two parts. The
first part is a uniform expansion proportional to the temperature rise 7. For any
elementary cubical element of an isotropic body, this expansion is the same in all
directions and in this manner only normal strains and no shearing strains occur. If
the coefficient of linear thermal expansion is ¢, this normal strain in any direction
is equal to 7. The second part of the strains at each point is due to the stress
components. The total strains at each point can, therefore, be written as

E. = O'X—V(O'y+0'2) +al

X

1
E
EZLO'—V(O' +O')+aT
vy~ EL%y x z)
£,= LE _O'Z — V(O‘X + O'y)_ + aT
_ 1 1 1
Y@/_Erx_ys :Vyz_Ez-yz’ }/ZX_ETZX



The stresses can be expressed explicitly in terms of strains by solving
Eq. (9.1a). These are
o,=Ae+2ue, - BA+2w) al

o,=Ae+2ue,— (3A+2u) o (9.2a)
o,=Ae+2ue,- (3A1+2u) ol
Ty = HYyp Ty, = WYy T = HY oy (9.2b)
The Lame constants A and u (= G) are given by
4= vE u=G=—2L 9.3)

1+v)(1-2v)’ 2(1+v)

When the temperature distribution is known, the problem of thermoelasticity con-
sists in determining the following 15 functions:
6 stress components o, 0,0, T, T, Ty
6 strain components &,, €, € Yy Vi Yix
3 displacement components u,, u, u,
so as to satisfy the following 15 equations throughout the body
3 equilibrium equations, Eq. (9.4)
3 stress—strain relations, Eq. (9.1)
6 strain-displacement relations, Eq. (9.5)
and the prescribed boundary conditions. In most problems, the boundary condi-

tions belong to one of the following two cases:

Traction Boundary Conditions In this case, the stress components determined
must agree with the prescribed surface traction at the boundary.

Displacement Boundary Conditions Here, the displacement components deter-
mined should agree with the prescribed displacements at the boundary.

In some cases, the prescribed boundary conditions may be a combination of
the above two, i.e. on a part of the boundary, the surface tractions are prescribed
and on the remaining part, displacements are prescribed.

() The method of arriving at a solution depends in general on the specific
nature of the problem. It is shown in books on thermoelasticity that if the
temperature distribution in a body is a linear function of the rectangular
Cartesian space coordinates, i.e. if

Ix, y,z ) =al)+ b(Ox+ c() y+ d() z (9.6)

where ¢represents time, then all the stress components are identically zero
throughout the body, provided that all external restraints, body forces and
displacement discontinuities are absent. Conversely, under those provisions,
this is the only temperature distribution for which all stress components are
identically zero. These results are obtained immediately by considering the
stress compatibility relations.
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(i) We shall now show that if a body is subjected to a uniform temperature ris

T'= T,(9 and if the boundary of the body is prevented from having any dis

placements, then the solution of the corresponding thermoelastic problem is
u,=0, u,=0, u,=0

¥
£=6=6=0.  Y=7,=Vy=0
_ Fa
Ty = T}fZ:TZXZO' Ux=5y=az=—1_2VTo



MODULE VI
THEOREM OF STATIONARY POTENTIAL ENERGY

The energy method of analysing the problems of elastic stability is based on an
extremum principle of mechanics. Consider an elastic body subjected to external
surface and body forces. Let the body be in equilibrium. During the application of
these forces, the body deforms and consequently, these forces do a certain amount
of work W. The internal forces which are set up inside the elastic body also do
work during the deformation process and this 1s stored as elastic strain energy.
When external forces are applied gradually and no dissipation of energy takes
place due to friction etc. the work done by the external forces should be equal to
the mternal elastic energy U, 1.e.

w=U (1045)
Let portions of the body be given small virtual displacements. These are small
displacements that are consistent with the constraints imposed on the body. For
example, i1f a point of the body is fixed, then the virtual displacement there is zero.
If a point of the body is constrained to lie on the surface of another body, then
the virtual displacement there should be tangential to the surface of the contact-
ing body. These virtual displacements being very small, the changes necessary in
the external forces to bring about these virtual displacements will also be very
small and will vanish in the limit. The work done by external surface and body
forces P; during these virtual displacements 1s

oW =2 Po A, + higher order terms (10.46)

where OA, are the work absorbing components of the virtual displacements. It is
convenient to define a potential V" of the external forces in such a manner that the
work done during virtual displacements is equal to =8V, i.e. a decrease in poten-
tial energy in the form of an equation

~ 6V =X PSA, = 6 (10.47)

In the above equation, we have neglected the higher order terms of Eq. (10.46). If
a part of the body is subjected to distributed external forces, then over that part,
the summation must be replaced by a surface integral.

From Eq. (10.47)

—O0V—-8W=0
Using Eq. (10.45), the above equation can be written as
o(U+1)=0 (10.48)



INTRODUCTION TO PLASTICITY

8.1 Introduction to Plasticity

8.1.1 Introduction

The theory of linear elasticity is useful for modelling materials which undergo small
deformations and which return to their original configuration upon removal of load.
Almost all real materials will undergo some permanent deformation, which remains after
removal of load. With metals, significant permanent deformations will usually occur
when the stress reaches some critical value, called the yield stress, a material property.

Elastic deformations are termed reversible; the energy expended in deformation is stored
as elastic strain energy and is completely recovered upon load removal. Permanent
deformations involve the dissipation of energy; such processes are termed irreversible, in
the sense that the original state can be achieved only by the expenditure of more energy.

The classical theory of plasticity grew out of the study of metals in the late nineteenth
century. It is concerned with materials which initially deform elastically, but which
deform plastically upon reaching a yield stress. In metals and other crystalline materials
the occurrence of plastic deformations at the micro-scale level is due to the motion of
dislocations and the migration of grain boundaries on the micro-level. In sands and other
granular materials plastic flow is due both to the irreversible rearrangement of individual
particles and to the irreversible crushing of individual particles. Similarly, compression
of bone to high stress levels will lead to particle crushing. The deformation of micro-
voids and the development of micro-cracks is also an important cause of plastic
deformations in materials such as rocks.

A good part of the discussion in what follows is concerned with the plasticity of metals;
this 1s the ‘simplest’ type of plasticity and it serves as a good background and
introduction to the modelling of plasticity in other material-types. There are two broad
groups of metal plasticity problem which are of interest to the engineer and analyst. The
first involves relatively small plastic strains, often of the same order as the elastic strains
which occur. Analysis of problems involving small plastic strains allows one to design
structures optimally, so that they will not fail when in service, but at the same time are not
stronger than they really need to be. In this sense, plasticity is seen as a material failure’.

The second type of problem involves very large strains and deformations, so large that the
elastic strains can be disregarded. These problems occur in the analysis of metals
manufacturing and forming processes, which can involve extrusion, drawing, forging,
rolling and so on. In these latter-type problems, a simplified model known as perfect
plasticity is usually employed (see below), and use is made of special limit theorems
which hold for such models.

Plastic deformations are normally rate independent, that is, the stresses induced are
independent of the rate of deformation (or rate of loading). This is in marked



contrast to classical Newtonian fluids for example, where the stress levels are
governed by the rate of deformation through the viscosity of the fluid.

Materials commonly known as “plastics” are not plastic in the sense described here.
They, like other polymeric materials, exhibit viscoelastic behaviour where, as the
name suggests, the material response has both elastic and viscous components. Due
to their viscosity, their response is, unlike the plastic materials, rate-dependent.
Further, although the viscoelastic materials can suffer irrecoverable deformation,
they do not have any critical yield or threshold stress, which is the characteristic
property of plastic behaviour. When a material undergoes plastic deformations, i.¢.
irrecoverable and at a critical yield stress, and these effects are rate dependent, the
material is referred to as being viscoplastic.

Plasticity theory began with Tresca in 1864, when he undertook an experimental program
into the extrusion of metals and published his tamous yield criterion discussed later on.
Further advances with yield criteria and plastic flow rules were made in the years which
followed by Saint-Venant, Levy, Von Mises, Hencky and Prandtl. The 1940s saw the
advent of the classical theory; Prager, Hill, Drucker and Koiter amongst others brought
together many fundamental aspects of the theory into a single framework. The arrival of
powerful computers in the 1980s and 1990s provided the impetus to develop the theory
further, giving it a more rigorous foundation based on thermodynamics principles, and
brought with it the need to consider many numerical and computational aspects to the
plasticity problem.

8.1.2 Observations from Standard Tests

In this section, a number of phenomena observed in the material testing of metals will be
noted. Some of these phenomena are simplified or ignored in some of the standard
plasticity models discussed later on.

At issue here is the fact that any model of a component with complex geometry, loaded in
a complex way and undergoing plastic deformation, must involve material parameters
which can be obtained in a straight forward manner from simple laboratory tests, such as
the tension test described next.

The Tension Test

Consider the following key experiment, the tensile test, in which a small, usually
cylindrical, specimen is gripped and stretched, usually at some given rate of stretching
(see Part I, §5.2.1). The force required to hold the specimen at a given stretch is recorded,
Fig. 8.1.1. If the material is a metal, the deformation remains elastic up to a certain force
level, the yield point of the material. Beyond this point, permanent plastic deformations
are induced. On unloading only the elastic deformation is recovered and the specimen
will have undergone a permanent elongation (and consequent lateral contraction).

In the elastic range the force-displacement behaviour for most engineering materials
(metals, rocks, plastics, but not soils) is linear. After passing the elastic limit (point 4 in
Fig. 8.1.1), the material “gives” and is said to undergo plastic flow. Further increases in
load are usually required to maintain the plastic flow and an increase in displacement; this



phenomenon is known as work-hardening or strain-hardening. In some cases, after an
nitial plastic flow and hardening, the force-displacement curve decreases, as in some
soils: the material 1s said to be softening. If the specimen is unloaded from a plastic state
(B) it will return along the path BC shown, parallel to the original elastic line. This is
elastic recovery. The strain which remains upon unloading is the permanent plastic
deformation. If the material is now loaded again, the force-displacement curve will re-
trace the unloading path CB until it again reaches the plastic state. Further increases in
stress will cause the curve to follow BD.

Two important observations concerning the above tension test (on most metals) are the

following:

(1) after the onset of plastic deformation, the material will be seen to undergo negligible
volume change, that is, it 1s incompressible.

(2) the force-displacement curve is more or less the same regardless of the rate at which
the specimen is stretched (at least at moderate temperatures).

hardening D

force

Yield point

elastic
loading

0 C displacement

plastic elastic
deformation deformation

Figure 8.1.1: force/displacement curve for the tension test

Nominal and True Stress and Strain

There are two different ways of describing the force /" which acts in a tension test. First,
normalising with respect to the original cross sectional area of the tension test specimen
A,, one has the nominal stress or engineering stress,

o = (8.1.1)

Alternatively, one can normalise with respect to the current cross-sectional area 4,
leading to the true stress,

ag =

F
— 8.1.2
y (8.1.2)



1 which # and 4 are both changing with ime. For very small elongations, within the
elastic range say, the cross-sectional area of the material undergoes negligible change anq
both definitions of stress are more or less equivalent.

Similarly, one can describe the deformation in two alternative ways. Denoting the
original specimen length by /, and the current length by /, one has the engineering strai

0 (8.1.C

Alternatively, the true strain is based on the fact that the “original length” is continually
changing: a small change in length @/ leads to a strain increment de = d/// and the
total strain 1s defined as the accumulation of these increments:

1
g, —J?—ln{fi] (8.1«

A 0

The true strain 1s also called the logarithmic strain or Hencky strain. Again, at small
deformations, the difference between these two strain measures is negligible. The true
strain and engineering strain are related through

g =In(l+¢) (8.1.5

Using the assumption of constant volume for plastic deformation and ignoring the very
small elastic volume changes, one has also { A Problem 3}

O':O'ni. (8.1.¢
]O

The stress-strain diagram for a tension test can now be described using the true
stress/strain or nominal stress/strain definitions, as in Fig. 8.1.2. The shape of the
nominal stress/strain diagram, Fig. 8.1.2a, is of course the same as the graph of force
versus displacement (change in length) in Fig. 8.1.1. 4 here denotes the point at which
the maximum force the specimen can withstand has been reached. The nominal stress at
4 1s called the Ultimate Tensile Strength (UTS) of the material. After this point, the
specimen “necks”, with a very rapid reduction in cross-sectional area somewhere about
the centre of the specimen until the specimen ruptures, as indicated by the asterisk.

Note that, during loading into the plastic region, the vield stress increases. For example,
if one unloads and re-loads (as in Fig. 8.1.1), the material stays elastic up until a stress
higher than the original yield stress Y. In this respect, the stress-strain curve can be
reoarded as a vield stress versus strain curve.



(b)

Figure 8.1.2: typical stress/strain curves; (a) engineering stress and strain, (b) true
stress and strain

Compression Test

A compression test will lead to similar results as the tensile stress. The yield stress in
compression will be approximately the same as (the negative of) the yield stress in
tension. If one plots the true stress versus true strain curve for both tension and
compression (absolute values for the compression), the two curves will more or less
coincide. This would indicate that the behaviour of the material under compression is
broadly similar to that under tension. If one were to use the nominal stress and strain,
then the two curves would not coincide; this is one of a number of good reasons for using
the #7ue definitions.



8.1.3 Assumptions of Plasticity Theory

Regarding the above test results then, in formulating a basic plasticity theory with which
to begin, the following assumptions are usually made:

(1) the response is independent of rate effects

(2) the material is incompressible in the plastic range

(3) there is no Bauschinger effect

(4) the yield stress is independent of hydrostatic pressure
(5) the material is 1sotropic

The first two of these will usually be very good approximations, the other three may or
may not be, depending on the material and circumstances. For example, most metals can
be regarded as 1sotropic. After large plastic deformation however, for example in rolling,
the material will have become anisotropic: there will be distinct material directions and
asymmetries.

Together with these, assumptions can be made on the type of hardening and on whether
elastic deformations are significant. For example, consider the hierarchy of models
illustrated in Fig. 8.1.4 below, commonly used in theoretical analyses. In (a) both the
elastic and plastic curves are assumed linear. In (b) work-hardening is neglected and the



yield stress is constant after initial yield. Such perfectly-plastic models are particularly
appropriate for studying processes where the metal 1s worked at a high temperature — such
as hot rolling — where work hardening is small. In many areas of applications the strains
involved are large, e.g. in metal working processes such as extrusion, rolling or drawing,
where up to 50% reduction ratios are common. In such cases the elastic strains can be
neglected altogether as in the two models (¢) and (d). The rigid/perfectly-plastic model
(d) is the crudest of all — and hence in many ways the most useful. It is widely used in
analysing metal forming processes, in the design of steel and concrete structures and in
the analysis of soil and rock stability.

A A

Yr — Y- —

0 > 0 >
(a) Linear Elastic-Plastic (b) Elastic/Perfectly-Plastic

o o A

0 > 0 >
(¢) Rigid/Linear Hardening (d) Rigid-Perfectly-Plastic

Figure 8.1.4: Simple models of elastic and plastic deformation



