
 

 

 

 

 

 

Lecture Notes 

On 

POWER SYSTEM-II 

 

 
A COURSE IN 6TH SEMESTER OF BACHELOR OF TECHNOLOGY PROGRAMME 

IN ELECTRICAL ENGINEERING 
 
 
 
 
 

 

 

 

 

 

 

 

Department of Electrical Engineering  
 

K K COLLEGE OF ENGINEERING & MANAGEMENT, DHANBAD 

 

 

 

 

 

 



DISCLAIER 
 

This document does not claim any originality and cannot be used as a 

substitute for prescribed textbooks. The matter presented here is prepared by 

the author for their respective teaching assignments by referring the text 

books and reference books. Further, this document is not intended to be used 

for commercial purpose and the committee members are not accountable for 

any issues, legal or otherwise, arising out of use of this document. 
 

] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT I 

Power system analysis 

The evaluation of power system is called as power system analysis 

 

Functions of power system analysis 

 To monitor the voltage at various buses, real and reactive power flow between buses.

 To design the circuit breakers.

 To plan future expansion of the existing system

 To analyze the system under different fault conditions

 To study the ability of the system for small and large disturbances (Stability studies)

 

COMPONENTS OF A POWER SYSTEM 

1.Alternator 

2.Power transformer 

3.Transmission lines 

4. Substation transformer 

5.Distribution transformer 

6.Loads 

 

SINGLE LINE DIAGRAM 

A single line diagram is diagrammatic representation of power system in which the components are 

represented by their symbols and interconnection between them are shown by a straight 

line9eventhough the system is three phase system0.The ratings and the impedances of the 

components are also marked on the single line diagram. 



 
 
 

Purpose of using single line diagram 

The purpose of the single line diagram is to supply in concise form of the significant information 

about the system. 

Per unit value. 

The per unit value of any quantity is defined as the ratio of the actual value of the any quantity to 

the base value of the same quantity as a decimal. 
 

per unit=actual value/base value 
 

Need for base values 

The components or various sections of power system may operate at different voltage and power 

levels. It will be convenient for analysis of power system if the voltage, power, current and 

impedance rating of components of power system are expressed with reference to a common value 

called base value. 

 
 

Advantages of per unit system 

i. Per unit data representation yields valuable relative magnitude information. 

ii. Circuit analysis of systems containing transformers of various transformation ratios is greatly 

simplified. 

iii. The p.u systems are ideal for the computerized analysis and simulation of complex power system 

problems. 

iv. Manufacturers usually specify the impedance values of equivalent in per unit of the equipments 

rating. If the any data is not available, it is easier to assume its per unit value than its numerical value. 



v. The ohmic values of impedances are refereed to secondary is different from the value as referee to 

primary. However, if base values are selected properly, the p.u impedance is the same on the two 

sides of the transformer. 

vi. The circuit laws are valid in p.u systems, and the power and voltages equations are simplified 

since the factors of √3 and 3 are eliminated. 

 

Change the base impedance from one set of base values to another set 

Let Z=Actual impedance ,Ω 

Zb=Base impedance ,Ω 

Per unit impedance of a circuit element= 𝑍 
𝑍𝑏 

𝑍 

(𝑘𝑉𝑏 )   2 
 

 

𝑀𝑉𝐴 𝑏 

𝑍×𝑀𝑉𝐴𝑏 
 

(𝑘𝑉𝑏 )2 
(1) 

 

The eqn 1 show  that the per unit impedance is directly proportional to base 

megavoltampere and inversely proportional to the square of the base voltage. 

Using Eqn 1 we can derive an expression to convert the p.u impedance expressed 

in one base value ( old base) to another base (new base) 

Let kVb,oldand MVAb,old represents old base values and kVb,newand MVA b ,new 

represent new base value 

Let Zp.u,old=p.u. impedance of a circuit element calculated on old base 

Zp.u,new=p.u. impedance of a circuit element calculated on new base 

If old base values are used to compute the p.u.impedance of a circuit element ,with 

impedance Z then eqn 1 can be written as 

𝑍 = 
𝑍 × 𝑀𝑉𝐴𝑏,𝑜𝑙𝑑 

𝑝.𝑢 ,𝑜𝑙𝑑 

(𝑘𝑉𝑏,𝑜𝑙𝑑 ) 
 

𝑍 = 𝑍𝑝.𝑢 ,𝑜𝑙𝑑 

(𝑘𝑉𝑏,𝑜𝑙𝑑 )
2

 

𝑀𝑉𝐴𝑏,𝑜𝑙𝑑 
(2)

 
 

If the new base values are used to compute thep.u. impedance of a circuit element 

with impedance Z, then eqn 1 can be written as 

= = 

2 



𝑍𝑝.𝑢 ,𝑛𝑒𝑤 = 
𝑍×𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤 

(𝑘𝑉𝑏 ,𝑛𝑒𝑤 )
2

 

(3) 

 

On substituting for Z from eqn 2 in eqn 3 we get 
 

(𝑘𝑉 )
2 

𝑀𝑉𝐴 
𝑍𝑝.𝑢 ,𝑛𝑒𝑤   = 𝑍𝑝.𝑢.𝑜𝑙𝑑

 𝑏,𝑜𝑙𝑑 
×

 𝑏,𝑛𝑒𝑤  
 

 
 

𝑍𝑝.𝑢,𝑛𝑒𝑤 

 

 
= 𝑍𝑝𝑢 
,𝑜𝑙𝑑 

 
 
 

2 

× (
 𝑘𝑉𝑏 ,𝑜𝑙𝑑 ) 
𝑘𝑉𝑏,𝑛𝑒𝑤 

 
 
× (

𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤 ) 
𝑀𝑉𝐴𝑏,𝑜𝑙𝑑 

𝑀𝑉𝐴𝑏,𝑜𝑙𝑑 (𝑘𝑉𝑏,𝑛𝑒𝑤 ) 
 
 
 
(4) 

 

The eqn 4 is used to convert the p.u.impedance expressed on one base value to another base 

 

 

MODELLING OF GENERATOR AND SYNCHRONOUS MOTOR 
 
 

 
1Φ equivalent circuit of generator 1Φ equivalent circuit of synchronous motor 

2 



MODELLING OF TRANSFORMER 
 
 

 
 
 

 

MODELLING OF TRANSMISSION LINE 
 

 

 
T type Π type 



 

MODELLING OF INDUCTION MOTOR 
 

 

 
Impedance diagram & approximations made in impedance diagram 

The impedance diagram is the equivalent circuit of power system in which the various 

components of power system are represented by their approximate or simplified equivalent 

circuits. The impedance diagram is used for load flow studies. 

Approximation: 

(i) The neutral reactances are neglected. 

(ii) The shunt branches in equivalent circuit of transformers are neglected. 
 

Reactance diagram & approximations made in reactance diagram 

The reactance diagram is the simplified equivalent circuit of power system in which the various 

components of power system are represented by their reactances. The reactance diagram can be 

obtained from impedance diagram if all the resistive components are neglected. The reactance 

diagram is used for fault calculations. 

Approximation: 

(i) The neutral reactances are neglected. 
(ii) The shunt branches in equivalent circuit of transformers are neglected. 

(iii) The resistances are neglected. 

(iv) All static loads are neglected. 

(v) The capacitance of transmission lines are neglected. 



 

PROCEDURE TO FORM REACTANCE DIAGRAM FROM SINGLE LINE 

DIAGRAM 

1.Select a base power kVAb or MVAb 

2.Select a base voltage kVb 

3. The voltage conversion is achieved by means of transformer kVb on LT section= kVb on HT section 

x LT voltage rating/HT voltage rating 

4. When specified reactance of a component is in ohms 

p.u reactance=actual reactance/base reactance 

specified reactance of a component is in p.u 

 

EXAMPLE 

1. The single line diagram of an unloaded power system is shown in Fig 1.The generator transformer 

ratings are as follows. 

G1=20 MVA, 11 kV, X’’=25% 

G2=30 MVA, 18 kV, X’’=25% 

G3=30 MVA, 20 kV, X’’=21% 

T1=25 MVA, 220/13.8 kV (∆/Y), X=15% 

T2=3 single phase units each rated 10 MVA, 127/18 kV(Y/∆), X=15% 

T3=15 MVA, 220/20 kV(Y/∆), X=15% 

Draw the reactance diagram using a base of 50 MVA and 11 kV on the generator1. 

 

Fig 1 
 

SOLUTION 



𝑘𝑉 

𝑘𝑉 

Base megavoltampere,MVAb,new=50 MVA 

Base kilovolt kVb,new=11 kV ( generator side) 

FORMULA 
 𝑘𝑉𝑏 ,𝑜𝑙𝑑   

2
 
 

𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤   

The new p.u. reactance 𝑋𝑝𝑢 ,𝑛𝑒𝑤 =𝑋𝑝𝑢 ,𝑜𝑙𝑑 × (
𝑘𝑉𝑏,𝑛𝑒𝑤 

) × ( 
𝑀𝑉𝐴𝑏,𝑜𝑙𝑑   

)
 

 
 

Reactance of Generator G 
 

kVb,old=11 kV kVb,new=11 kV 

 

MVAb,old= 20 MVA MVAb,new=50 MVA 

 

Xp.u,old=0.25p.u 

 

 

 
 

 𝑘𝑉𝑏 ,𝑜𝑙𝑑   
2

 

 
 
 
 
 
 𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤   

The new p.u. reactance of Generator G=𝑋𝑝𝑢 ,𝑜𝑙𝑑 × ( ) 
𝑏 ,𝑛𝑒𝑤 

× ( 
𝑀𝑉𝐴𝑏,𝑜𝑙𝑑   

)
 

 

= 
11   2 50 

 

 
Reactance of Transformer T1 

0.25 × (  ) 
11 

× (   ) =j0.625p.u 
20 

 

kVb,old=11 kV kVb,new=11 kV 

 

MVAb,old= 25 MVA MVAb,new=50 MVA 

Xp.u,old=0.15p.u 

 

 

 
 𝑘𝑉𝑏 ,𝑜𝑙𝑑   

2
 

 
 
 
 
 𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤   

The new p.u. reactance of Transformer T1=𝑋𝑝𝑢 ,𝑜𝑙𝑑 × ( ) 
𝑏 ,𝑛𝑒𝑤 

× ( 
𝑀𝑉𝐴𝑏,𝑜𝑙𝑑   

)
 

 

= 
11   2 50 

 

 
Reactance of Transmission Line 

 

It is connected to the HT side of the Transformer T1 

0.15 × (  ) 
11 

× (   ) =j0.3 p.u 
25 

 

Base kV on HT side of transformer T 1 =𝐵𝑎𝑠𝑒 𝑘𝑉 𝑜𝑛 𝐿𝑇 𝑠𝑖𝑑𝑒 × 𝐻𝑇 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑛𝑔 
𝐿𝑇 𝑣𝑜𝑙 𝑡𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑛𝑔 

=11 × 220 = 220 𝑘𝑉 
11 

 

Actual Impedance X actual= 100ohm 
 

(𝑘𝑉 𝑏 ,𝑛𝑒𝑤 )
2

 

Base impedance X base= 
𝑀𝑉𝐴𝑏,𝑛𝑒𝑤     

= 

 
 
2202 

= 968 𝑜� 𝑚 
50 



𝑘𝑉 

𝑘𝑉 

p.u reactance of 100 Ω transmission line=𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 ,𝑜� 𝑚 = 100 = 𝑗0.103 𝑝. 𝑢 
𝐵𝑎𝑠𝑒 𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 ,𝑜� 𝑚 968 

 

p.u reactance of 150 Ω transmission line=𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 ,𝑜� 𝑚 = 150 = 𝑗0.154 𝑝. 𝑢 
𝐵𝑎𝑠𝑒 𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 ,𝑜� 𝑚 968 

 

 
Reactance of Transformer T2 

 
 

kVb,old=127 * √3 kV =220 kV  kVb,new=220 kV 

MVAb,old= 10 * 3=30 MVA MVAb,new=50 MVA 

Xp.u,old=0.15p.u 
 𝑘𝑉𝑏 ,𝑜𝑙𝑑   

2
 

The new p.u. reactance of Transformer T2=𝑋𝑝𝑢 ,𝑜𝑙𝑑 × ( ) 
𝑏 ,𝑛𝑒𝑤 

× (
𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤 ) 
𝑀𝑉𝐴𝑏,𝑜𝑙𝑑 

 

=0.15 × (220 
2

 
50   = j0.25 p.u 

 
Reactance of Generator G2 

220
) 

× (   ) 
30 

 

It is connected to the LT side of the Transformer T2 

 
Base kV on LT side of transformer T 2 =𝐵𝑎𝑠𝑒 𝑘𝑉 𝑜𝑛 𝐻𝑇 𝑠𝑖𝑑𝑒 × 𝐿𝑇 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑛𝑔 

𝐻𝑇 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑛𝑔 

=220 × 18 
220 

= 18 𝑘𝑉 

 
 

kVb,old=18 kV kVb,new=18 kV 

 

MVAb,old= 30 MVA MVAb,new=50 MVA 

 

Xp.u,old=0.25 p.u 

 

 

 
 

 𝑘𝑉𝑏 ,𝑜𝑙𝑑   
2

 

 
 
 
 
 
 𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤   

The new p.u. reactance of Generator G 2=𝑋𝑝𝑢 ,𝑜𝑙𝑑 × ( ) 
𝑏 ,𝑛𝑒𝑤 

× ( 
𝑀𝑉𝐴𝑏,𝑜𝑙𝑑   

)
 

 

= 
18   2 50 

 

 
Reactance of Transformer T3 

0.25 × (  ) 
18 

× (   ) =j0.4167 p.u 
30 

 
 

kVb,old=20 kV kVb,new=20 kV 

 

MVAb,old= 20 MVA MVAb,new=50 MVA 



𝑘𝑉 

𝑘𝑉 

Xp.u,old=0.15p.u  
 𝑘𝑉𝑏 ,𝑜𝑙𝑑   

2
 

 
𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤   

The new p.u. reactance of Transformer T3=𝑋𝑝𝑢 ,𝑜𝑙𝑑 × ( ) 
𝑏 ,𝑛𝑒𝑤 

× ( 
𝑀𝑉𝐴𝑏,𝑜𝑙𝑑   

)
 

 

= 
20   2 50 

 0.15 × ( ) 
20 

× (   ) = j0.25 p.u 
30 

 
 
 

Reactance of Generator G3 

 

It is connected to the LT side of the Transformer T3 

 
Base kV on LT side of transformer T 3 =𝐵𝑎𝑠𝑒 𝑘𝑉 𝑜𝑛 𝐻𝑇 𝑠𝑖𝑑𝑒 × 𝐿𝑇 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑛𝑔 

𝐻𝑇 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑛𝑔 

=220 × 20 
220 

= 20 𝑘𝑉 

 
 

kVb,old=20 kV kVb,new=20 kV 

 

MVAb,old= 30 MVA MVAb,new=50 MVA 

 

Xp.u,old=0.21 p.u 

 

 

 
 

 𝑘𝑉𝑏 ,𝑜𝑙𝑑   
2

 

 
 
 
 
 
 𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤   

The new p.u. reactance of Generator G 3=𝑋𝑝𝑢 ,𝑜𝑙𝑑 × ( ) 
𝑏 ,𝑛𝑒𝑤 

× ( 
𝑀𝑉𝐴𝑏,𝑜𝑙𝑑   

)
 

 

= 
20   2 50 

 0.21 × ( ) 
20 

× (   ) =j0.35 p.u 
30 

 
 

 

2) Draw the reactance diagram for the power system shown in fig 4 .Use a base of 50MVA 230 kV in 30 

Ω line. The ratings of the generator, motor and transformers are 

Generator = 20 MVA, 20 kV, X=20% 

Motor = 35 MVA, 13.2 kV, X=25% 

T1 = 25 MVA, 18/230 kV (Y/Y), X=10% 

T2 = 45 MVA, 230/13.8 kV (Y/∆), X=15% 

 



𝑘𝑉 

𝑘𝑉 

Fig 4 

Solution 

Base megavoltampere,MVAb,new=50 MVA 
 

Base kilovolt kVb,new=230 kV ( Transmission line side) 
 

FORMULA  
 𝑘𝑉𝑏 ,𝑜𝑙𝑑   

2
 

 
𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤   

The new p.u. reactance 𝑋𝑝𝑢 ,𝑛𝑒𝑤 =𝑋𝑝𝑢 ,𝑜𝑙𝑑 × (
𝑘𝑉𝑏,𝑛𝑒𝑤 

) × ( 
𝑀𝑉𝐴𝑏,𝑜𝑙𝑑   

)
 

 

Reactance of Generator G 

It is connected to the LT side of the T1 transformer 

Base kV on LT side of transformer T 1 =𝐵𝑎𝑠𝑒 𝑘𝑉 𝑜𝑛 𝐻𝑇 𝑠𝑖𝑑𝑒 × 𝐿𝑇 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑛𝑔 
𝐻𝑇 𝑣𝑜𝑙𝑡𝑎 𝑔𝑒 𝑟𝑎𝑡𝑖𝑛𝑔 

=230 × 18 
230 

= 18 𝑘𝑉 

 
 

kVb,old=20 kV kVb,new=18 kV 

 

MVAb,old= 20 MVA MVAb,new=50 MVA 

 

Xp.u,old=0.2p.u 

 

 

 
 

 𝑘𝑉𝑏 ,𝑜𝑙𝑑   
2

 

 
 
 
 
 
 𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤   

The new p.u. reactance of Generator G=𝑋𝑝𝑢 ,𝑜𝑙𝑑 × ( ) 
𝑏 ,𝑛𝑒𝑤 

× ( 
𝑀𝑉𝐴𝑏,𝑜𝑙𝑑   

)
 

 

= 
20   2 50 

 0.2 × (  ) 
18 

× (   ) =j0.617 p.u 
20 

 
 

Reactance of Transformer T1 
 

kVb,old=18 kV kVb,new=18 kV 

 

MVAb,old= 25 MVA MVAb,new=50 MVA 

Xp.u,old=0.1p.u 

 

 

 
 𝑘𝑉𝑏 ,𝑜𝑙𝑑   

2
 

 
 
 
 
 𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤   

The new p.u. reactance of Transformer T1=𝑋𝑝𝑢 ,𝑜𝑙𝑑 × ( ) 
𝑏 ,𝑛𝑒𝑤 

× ( 
𝑀𝑉𝐴𝑏,𝑜𝑙𝑑   

)
 

 

= 
18   2 50 

 0.1 × (  ) 
18 

× (   ) =j0.2 p.u 
25 

 
 
 

Reactance of Transmission Line 
 

It is connected to the HT side of the Transformer T1 



𝑘𝑉 

𝑘𝑉 

Actual Impedance X actual= j30 ohm 
 

(𝑘𝑉 𝑏 ,𝑛𝑒𝑤 )
2

 

Base impedance X base= 
𝑀𝑉𝐴𝑏,𝑛𝑒𝑤     

= 

 
2302 

= 1058 𝑜� 𝑚 
50 

 

p.u reactance of j30 Ω transmission line=𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 ,𝑜� 𝑚 = 𝑗30 = 𝑗0.028 𝑝. 𝑢 
𝐵𝑎𝑠𝑒 𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 ,𝑜� 𝑚 1058 

 
 
 

Reactance of Transformer T2 

 
 

kVb,old=230 kV kVb,new=230 kV 

 

MVAb,old= 45 MVA MVAb,new=50 MVA 

 
Xp.u,old=0.15p.u 

 𝑘𝑉𝑏 ,𝑜𝑙𝑑   
2

 
The new p.u. reactance of Transformer T2=𝑋𝑝𝑢 ,𝑜𝑙𝑑 × ( ) 

𝑏 ,𝑛𝑒𝑤 

× (
𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤 ) 
𝑀𝑉𝐴𝑏,𝑜𝑙𝑑 

 

=0.15 × (230 
2

 
50   = j0.166 p.u 

 
Reactance of  Motor M2 

230
) 

× (   ) 
45 

 

It is connected to the LT side of the Transformer T2 

 
Base kV on LT side of transformer T 2 =𝐵𝑎𝑠𝑒 𝑘𝑉 𝑜𝑛 𝐻𝑇 𝑠𝑖𝑑𝑒 × 𝐿𝑇 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑛𝑔 

𝐻𝑇 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑛𝑔 

=230 × 13.8 = 13.8 𝑘𝑉 
230 

 
 

kVb,old=13.2 kV kVb,new=13.8 kV 

 

MVAb,old= 35 MVA MVAb,new=50 MVA 

 

Xp.u,old=0.25 p.u 
2 

The new p.u. reactance of Generator G 2=𝑋𝑝𝑢 ,𝑜𝑙𝑑 × ( 𝑘𝑉𝑏,𝑜𝑙𝑑 ) 
𝑏 ,𝑛𝑒𝑤 

 
 
 
 
× (

𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤 ) 
𝑀𝑉𝐴𝑏,𝑜𝑙𝑑 

 

=0.25 × (13.2 
2 50  

=j0.326 p.u 
 

13.8
)  × (   ) 

35 



Unit II 

Symmetrical Components 
An unbalanced system of N related vectors can be resolved into N systems of balanced vectors. 

The N – sets of balanced vectors are called symmetrical components. Each set consists of N – vectors 

which are equal in length and having equal phase angles between adjacent vectors. 

 

Sequence Impedance and Sequence Network 
The sequence impedances are impedances offered by the devices or components for the like 

sequence component of the current .The single phase equivalent circuit of a power system consisting of 

impedances to the current of any one sequence only is called sequence network. 

 
Positive Sequence Components 

The positive sequence components are equal in magnitude and displayed from each other 

by 120o with the same sequence as the original phases. The positive sequence currents and voltages 

follow the same cycle order of the original source. In the case of typical counter clockwise rotation 

electrical system, the positive sequence phasor are shown in Fig . The same case applies for the 

positive current phasors. This sequence is also called the “abc” sequence and usually denoted by 

the symbol “+” or “1” 



1200 

1200 

1200 

 

 
 
 

Negative Sequence Components 

This sequence has components that are also equal in magnitude and displayed from each 

other by 120o similar to the positive sequence components. However, it has an opposite phase 

sequence from the original system. The negative sequence is identified as the “acb” sequence 

and usually denoted by the symbol “-” or “2” [9].The phasors of this sequence are shown in Fig 

where the phasors rotate anti- clockwise. This sequence occurs only in case of an unsymmetrical 

fault in addition to the positive sequence components, 

 

 

 

 

 
Zero Sequence Components 

In this sequence, its components consist of three phasors which are equal in magnitude as before but 

with a zero displacement. The phasor components are in phase with each other. This is illustrated in 

Fig . Under an asymmetrical fault condition, this sequence symbolizes the residual electricity in the 

system in terms of voltages and currents where a ground or a fourth wire exists. It happens when 

ground currents return to the power system through any grounding point in the electrical system. In 

this type of faults, the positive and the negative components are also present. This sequence is known 

by the symbol “0” . 

1200 
1200 

1200 



 

 
 

 
 

 

 

EXAMPLE 
 

1. The symmetrical components of a phase –a voltage in a 3-phase unbalanced system are 

Va0  10180 
0 V, Va1  5000 V and V  20900 V. Determine the phase voltages V ,Vb and Vc 

 

The phase voltages of 𝑉𝑎 , 𝑉𝑏 𝑎𝑛𝑑 𝑉𝑐  

𝑉𝑎 

 
 

1 1 1 

 

𝑉𝑎0 

[𝑉𝑏 ] = [1 𝑎2 𝑎 ] [𝑉𝑎1] 
𝑉𝑐 1 𝑎 𝑎2 𝑉𝑎2 

 

 
 
 
 

Va0 

V
a1 

 

 

 

 
 

 10180
0
  10  j0 V 

 5000  50  j0 
V 

𝑉𝑎 = 𝑉𝑎0 + 𝑉𝑎1 + 𝑉𝑎2 

𝑉𝑏 = 𝑉𝑎0 + 𝑎2𝑉𝑎1 + 𝑎𝑉𝑎2 

𝑉𝑐 = 𝑉𝑎0 + 𝑎𝑉𝑎1 + 𝑎2𝑉𝑎2 

 

Va2 
 20900  0  j20 

V 
 

a=1∠1200   𝑎2= 1∠2400 

𝑎2𝑉𝑎1 = 1∠2400 × 50∠00 = 50∠2400 = −25 − j43.30 

𝑎𝑉𝑎1 = 1∠1200 × 50∠00 = 50∠1200 = −25 + j43.30 

𝑎2𝑉𝑎2 = 1∠2400 × 20∠900 = 20∠233 = 17.32 − j10 

𝑎𝑉𝑎2 = 1∠1200 × 20∠900 = 20∠2100 = −17.32�− j10 

 
𝑉𝑎 = 𝑉𝑎0 + 𝑉𝑎1 + 𝑉𝑎2 = (−10 + 𝑗0) + (50 + 𝑗0) + (0 + 𝑗20) = 40 + 𝑗20 = 44.72∠270 𝑉 

a2 a 



𝑉𝑏 = 𝑉𝑎0 + 𝑎2𝑉𝑎1 + 𝑎𝑉𝑎2 = (−10 + 𝑗0) + (−25�− j43.30) + (−17.32 − j10) = −52.32 − 𝑗53.90 

= 74.69∠−1340 V 

𝑉𝑐 = 𝑉𝑎0 + 𝑎𝑉𝑎1 + 𝑎2𝑉𝑎2 = (−25 − j43.30) +�(−25 + j43.30)+ 17.32 − j10 =-17.68+j33.3 

= 37.70 ∠−1180 𝑉 

THREE-SEQUENCE IMPEDANCES AND SEQUENCE NETWORKS 
 

Positive sequence currents give rise to only positive sequence voltages, the negative sequence currents 

give rise to only negative sequence voltages and zero sequence currents give rise to only zero sequence 

voltages, hence each network can be regarded as flowing within in its own network through impedances 

of its own sequence only. 
 

In any part of the circuit, the voltage drop caused by current of a certain sequence depends on the 

impedance of that part of the circuit to current of that sequence. 

The impedance of any section of a balanced network to current of one sequence may be different from 

impedance to current of another sequence. 

The impedance of a circuit when positive sequence currents are flowing is called impedance, When only 

negative sequence currents are flowing the impedance is termed as negative sequence impedance. With 

only zero sequence currents flowing the impedance is termed as zero sequence impedance. 
 

The analysis of unsymmetrical faults in power systems is carried out by finding the symmetrical 

components of the unbalanced currents. 

Since each sequence current causes a voltage drop of that sequence only, each sequence current can be 

considered to flow in an independent network composed of impedances to current of that sequence 

only. 
 

The single phase equivalent circuit composed of the impedances to current of any one sequence only is 
 

called the sequence network of that particular sequence. The sequence networks contain the generated 

emfs and impedances of like sequence. Therefore for every power system we can form three- sequence 

network s. These sequence networks, carrying current Ia1, Ia2 and Ia0 are then inter-connected to 

represent the different fault conditions. 

 
 

SEQUENCE NETWORKS OF SYNCHRONOUS MACHINES 
 

An unloaded synchronous machine having its neutral earthed through impedance, Zn, is shown 

in fig. below. A fault at its terminals causes currents Ia, Ib and Ic to flow in the lines. If fault 

involves earth, a current In flows into the neutral from the earth. This current flows through the 



neutral impedance Zn. Thus depending on the type of fault, one or more of the line currents 

may be zero. Thus depending on the type of fault, one or more of the line currents may be zero. 

 
 

 
POSITIVE SEQUENCE NETWORK 

 

The generated voltages of a synchronous machine are of positive sequence only since the 

windings of a synchronous machine are symmetrical. 

The positive sequence network consists of an emf equal to no load terminal voltages and is in 

series with the positive sequence impedance Z1 of the machine. Fig.2 (b) and fig.2(c) shows the 

paths for positive sequence currents and positive sequence network respectively on a single 

phase basis in the synchronous machine. 

The neutral impedance Zn does not appear in the circuit because the phasor sum of Ia1, Ib1 and 

Ic1 is zero and no positive sequence current can flow through Zn. Since its a balanced circuit, the 

positive sequence N The reference bus for the positive sequence network is the neutral of the 

generator. The positive sequence impedance Z1 consists of winding resistance and direct axis 

reactance. The reactance is the sub-transient reactance X”d or transient reactance X’d or 

synchronous reactance Xd depending on whether sub-transient, transient or steady state 

conditions are being studied. From fig.2 (b) , 

the positive sequence voltage of terminal a with respect to the reference bus is given by: 

Va1= Ea - Z1Ia1 



 

  
 
 

 

NEGATIVE SEQUENCE NETWORK 
 

A synchronous machine does not generate any negative sequence voltage. The flow of negative 

sequence currents in the stator windings creates an mmf which rotates at synchronous speed in a 

direction opposite to the direction of rotor, i.e., at twice the synchronous speed with respect to 

rotor. 

Thus the negative sequence mmf alternates past the direct and quadrature axis and sets up a 

varying armature reaction effect. Thus, the negative sequence reactance is taken as the average of 

direct axis and quadrature axis sub-transient reactance, i.e., 

X2 = 0.5 ( X”d + X”q ). 

It not necessary to consider any time variation of X2 during transient conditions because there is 

no normal constant armature reaction to be effected. For more accurate calculations, the negative 

sequence resistance should be considered to account for power dissipated in the rotor poles or 

damper winding by double supply frequency induced currents. The fig.below shows the 

negative sequence currents paths and the negative sequence network respectively on a single 

phase basis of a synchronous machine. The reference bus for the negative sequence network is 

the neutral of the machine. 

Thus, the negative sequence voltage of terminal a with respect to the reference bus is given by: 
 

Va2= -Z2Ia2 



 

  
 

ZERO SEQUENCE NETWORK 
 

No zero sequence voltage is induced in a synchronous machine. The flow of zero sequence 

currents in the stator windings produces three mmf which are in time phase. If each phase 

winding produced a sinusoidal space mmf, then with the rotor removed, the flux at a point on the 

axis of the stator due to zero sequence current would be zero at every instant. 

When the flux in the air gap or the leakage flux around slots or end connections is considered, 

no point in these regions is equidistant from all the three –phase windings of the stator. 

The mmf produced by a phase winding departs from a sine wave, by amounts which depend 

upon the arrangement of the winding. 

The zero sequence currents flow through the neutral impedance Zn and the current flowing 

through this impedance is 3Ia0 

Fig.2(f) and fig.2(g) shows the zero sequence current paths and zero sequence network 

respectively, and as can be seen, the zero sequence voltage drop from point a to ground is - 

3Ia0Zn –Ia0Zg0 where Zg0 is the zero sequence impedance per phase of the generator. 

Since the current in the zero sequence network is Ia0 this network must have an impedance of 

3Zn +Zg0. Thus, Z0 =3Zn +Zg0 The zero sequence voltage of terminal a with respect to the 

reference bus is thus: Va0 = -Ia0Z0 

 
 

 

 

 

 

 

 

 

 



 

Symmetrical & Unsymmetrical Faults 

Normally, a power system operates under balanced conditions. When the system becomes 

unbalanced due to the failures of insulation at any point or due to the contact of live wires, a 

short–circuit or fault, is said to occur in the line. Faults may occur in the power system due to the 

number of reasons like natural disturbances (lightning, high-speed winds, earthquakes), 

insulation breakdown, falling of a tree, bird shorting, etc. 

 
Faults that occurs in transmission lines are broadly classified as 

 Symmetrical faults 
 Unsymmetrical faults 

Symmetrical faults 

In such types of faults, all the phases are short-circuited to each other and often to earth. Such 

fault is balanced in the sense that the systems remain symmetrical, or we can say the lines 

displaced by an equal angle (i.e. 120° in three phase line). It is the most severe type of fault 

involving largest current, but it occurs rarely. For this reason balanced short- circuit calculation 

is performed to determine these large currents. 

 
Need for fault analysis 

 To determine the magnitude of fault current throughout the power system after fault occurs. 
 

 To select the ratings for fuses, breakers and switchgear. 
 

 To check the MVA ratings of the existing circuit breakers when new generators are added into a 

system. 

Common Power System Faults 
Power system faults may be categorized as one of four types; in order of frequency of occurrence, they 

are: · 

 Single line to ground fault 

 Line to line fault 

 Double line to ground fault 

 Balanced three phase fault 

http://circuitglobe.com/electrical-fault.html
http://circuitglobe.com/electrical-fault.html


3- Phase fault current transients in Phase fault current transients in synchronous 

generators synchronous generators 
When a symmetrical 3-phase fault occurs at the terminals of a synchronous generator, the resulting 

current flow in the phases of the generator can appear as shown. 
 

 

The current can be represented as a transient DC component added on top of a symmetrical AC 

component. 

 

 

Therefore, while before the fault, only AC voltages and currents were present within the generator, 

immediately after the fault, both AC and DC currents are present. 

 
 

 



Fault current transients in machines Fault current transients in machines 

 
When the fault occurs, the AC component When the fault occurs, the AC component of current jumps to 

a very large value, but of current jumps to a very large value, but the total current cannot change instantly the total 

current cannot change instantly since the series inductance of the machine since the series inductance of the 

machine will prevent this from happening. will prevent this from happening. 

The transient DC component of current is The transient DC component of current is just large enough such that the 

sum of the just large enough such that the sum of the AC and DC components just AC and DC components just 

after the fault the fault equals the AC current just equals the AC current just before the fault. the fault.Since the 

instantaneous values of current Since the instantaneous values of current at the moment of the fault are different in 

at the moment of the fault are different in each phase, the magnitude of DC each phase, the magnitude of DC 

components will be different in different components will be different in different phases. 

 

 







 

There are three periods of time: 

 Sub -transient period: first cycle or so after the fault transient period: first cycle or so 

after the fault – AC current is very AC current is very large and falls rapidly; large and 

falls rapidly;

  Transient period: current falls at a slower rate; Transient period: current falls at a slower 

rate;

 Steady -state period: current reaches its steady value. state period: current reaches its 

steady value.

 
It is possible to determine t It is possible to determine the time constants f he time constants for 

the sub or the sub -transient transient and transient periods . and transient periods 

 

SHORT CIRCUIT CAPACITY 
 It is the product of magnitudes of the prefault voltage and the post fault current.

 

  It is used to determine the dimension of a bus bar and the interrupting capacity of a circuit 

breaker.
 

Short Circuit Capacity (SCC) 
 

SCC  V 
0
 I 

 

IF 


S 

SCC 


SCC 




Sb,3

b,1







MVA 

MVA / 




I f 



Procedure for calculating short circuit capacity and fault current 
 

 Draw a single line diagram and select common base Sb MVA and kV
 

 Draw the reactance diagram and calculate the total p.u impedance from the fault point to 

source (Thevenin impedance ZT)

 Determine SCC and If

VT 

ZT 

 
 

 

ZT ZT p.u  

ZT p.u  

SCC *10
6
 

3

*10
6
 

L,b  

 



𝑘𝑉 

EXAMPLE 

Two generators are connected in parallel to the low voltage side of a transformer. Generators G1 and G 

2 are each rated at 50 MVA, 13.8 kV, with a subtransient resistance of 0.2 pu. Transformer T1 is rated at 

100 MVA, 13.8/115 kV with a series reactance of 0.08 pu and negligible resistance. 
 

Assume that initially the voltage on the high side of the transformer is 120 kV, that the transformer is 

unloaded, and that there are no circulating currents between the generators. Calculate the subtransient 

fault current that will flow if a 3 phase fault occurs at the high-voltage side of transformer 
 

 

Let choose the per-unit base values for this power system to be 100 MVA and 115 kV at the high-voltage 

side and 13.8 kV at the low-voltage side of the transformer. The subtransient reactance of the two 

generators to the system base is 
 

2 

𝑋𝑝𝑢 ,𝑛𝑒𝑤 =𝑋𝑝𝑢 ,𝑜𝑙𝑑 × (
 𝑘𝑉𝑏 ,𝑜𝑙𝑑 ) 

𝑏 ,𝑛𝑒𝑤 
× (

𝑀𝑉𝐴𝑏 ,𝑛𝑒𝑤 ) 
𝑀𝑉𝐴𝑏,𝑜𝑙𝑑 

 

𝑋 " = 𝑋 " = 0.2 × (13,800  
2

 100,000 
 

1 2 13,800
) × ( 

50,000 
) =j0.4p.u 

 

 

The reactance of the transformer is already given on the system base, it will not change 
 

𝑋𝑇 = 0.08 𝑝. 𝑢 

The per-unit voltage on the high-voltage side of the transformer is 
 
 

𝑉 = 
𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 

= 
120,000 

= 𝑗1.044 𝑝. 𝑢
 

𝑝𝑢 
𝐵𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒 115,000 

 
 
 

Since there is no load on the system, the voltage at the terminals of each generator, and the internal 

generated voltage of each generator must also be 1.044 pu. The per-phase per-unit equivalent circuit of 



the system is We observe that the phases of internal generated voltages are arbitrarily chosen as 0 0. 

The phase angles of both voltages must be the same since the generators were working in parallel 

To find the subtransient fault current, we need to solve for the voltage at the bus 1 of the system. To 

find this voltage, we must convert first the per-unit impedances to admittances, and the voltage sources 

to equivalent current sources. The Thevenin impedance of each generator is ZTh = j0.4, so the short- 

circuit current of each generator is 

𝐼 = 
𝑉𝑜𝑐 

= 
𝑠𝑢 𝑍𝑡�

 

1.044∠00 

𝑗0.4 
= 2.61∠900 

 

Then the node equation for voltage V1 
 

𝑉1(−𝑗2.5) + 𝑉1(−𝑗2.5) + 𝑉1(−𝑗12.5) = 2.61∠ − 900 +�2.61∠ − 900 
 
 

5.22∠900 0 
 𝑉1 = 

−𝑗17.5   
= 0.298∠0 

 

Therefore, the subtransient current in the fault is 
 

𝐼𝐹 = 𝑉1(−𝑗12.5) = 3.729∠−900 𝑝. 𝑢 

Since the base current at the high-voltage side of the transformer is 
 
 

𝐼 = 
  𝑆3𝛷,𝑏𝑎𝑠𝑒    

= 
100,000,000 

= 502 𝐴
 

𝑏𝑎𝑠𝑒 

√3𝑉𝐿𝐿,𝑏𝑎𝑠𝑒 √3115,000 
 

the subtransient fault current will be 
 

IF=IF,p.u I base=3.729×502=1872 A 

 
 
 
 
 

ALGORITHM FOR SHORT CIRCUIT ANALYSIS USING BUS IMPEDANCE MATRIX 

• Consider a n bus network. Assume that three phase fault is applied at bus k through a fault 

impedance zf 

Prefault voltages at all the buses are 



 
 

• Draw the Thevenin equivalent circuit i.e Zeroing all voltage sources and add voltage source 

at faulted bus k and draw the reactance diagram 
 

• The change in bus voltage due to fault is 

V1 

. 


 

Vbus 

. 

V 


 k 
. 

V 



 n 

• The bus voltages during the fault is 

 

 

• The current entering into all the buses is zero.the current entering into faulted bus k is –ve of 

the current leaving the 

bus k 





 
UNSYMMETRICAL FAULTS 

 One or two phases are involved
 

 Voltages and currents become unbalanced and each phase is to be treated individually
 

 The various types of faults are
 

Shunt type faults 

1. Line to Ground fault (LG) 
 

2. Line to Line fault (LL) 
 

3. Line to Line to Ground fault (LLG) 
 

Series type faults 

 Open conductor fault (one or two conductor open fault) 
 

 Symmetrical components can be used to transform three phase unbalanced voltages and 

currents to balanced voltages and currents
 

 Three phase unbalanced phasors can be resolved into following three sequences 

1.Positive sequence components

2. Negative sequence components 
 

3. Zero sequence components 
 

Single-Line-to-Ground Fault 
 

Let a 1LG fault has occurred at node k of a network. The faulted segment is then as shown in Fig. 8where 
it is assumed that phase-a has touched the ground through an impedance Zf . Since the system is 
unloaded before the occurrence of the fault we have 

 
 

(1) 



 
 

Fig. Representation of 1LG fault. 

 
Also the phase-a voltage at the fault point is given by 

 
 

From (1) we can write (2) 

 
 
 
 

(3) 
 

Solving (.3) we get 

 
 

(4) 
 

his implies that the three sequence currents are in series for the 1LG fault. Let us denote the zero, 

positive     and     negative     sequence      Thevenin      impedance      at      the      faulted      point 

as Z kk0 , Z kk1 and Z kk2 respectively. 

 
 
 
 

(5) 
 

Then from (4) and (5) we can write 
 
 

(6) 

Again since 
 

(7) 
 

The Thevenin equivalent of the sequence network is shown in Fig. 8.3. 



 

 
 

 

 

Example 1 

Fig. Thevenin equivalent of a 1LG fault. 

 

A three-phase Y-connected synchronous generator is running unloaded with rated voltage when a 1LG 
fault occurs at its terminals. The generator is rated 20 kV, 220 MVA, with subsynchronous reactance of 
0.2 per unit. Assume that the subtransient mutual reactance between the windings is 0.025 per unit. The 
neutral of the generator is grounded through a 0.05 per unit reactance. The equivalent circuit of the 
generator is shown in Fig. We have to find out the negative and zero sequence reactances. 

 

 
 

 
Since the generator is unloaded the internal emfs are 

 
𝐸𝑎𝑛 = 1.0 𝐸𝑏𝑛 = 1.0∠−1200 𝐸𝑐𝑛 = 1.0∠1200 

Since no current flows in phases b and c, once the fault occurs, we have from Fig. 

𝐼𝑓𝑎 = 
1 

𝑗(0.2 + 0.05) 
= 2�−�𝑗4.0 



Then we also have  

𝑉𝑛 = −𝑋𝑛 𝐼𝑓𝑎 = −0.2 
 

From Fig. we get  
𝑉𝑎 = 0 

𝑉𝑏 = 𝐸𝑏𝑛 + 𝑉𝑛 + 𝑗0.025𝐼𝑓𝑎 = −0.6 − 𝑗0.866 = 1.0536∠ − 124.720 

𝑉𝑐 = 𝐸𝑐𝑛 + 𝑉𝑛 + 𝑗0.025𝐼𝑓𝑎 = −0.6 + 𝑗0.866 = 1.0536∠124.720 
 

Therefore  
0 −0.4 

𝑉𝑎012 = 𝐶 [1.0536∠ − 124.720] = [ 0.7 ] 
1.0536∠124.720 −0.3 

𝐼 = 
𝐸𝑎𝑛 − 𝑉𝑎1 

= 
1 − 0.7 

= −𝑗1.333 
𝑓𝑎 1 𝑍1 𝑗0.225 

 

𝐼𝑓𝑎 0 = 𝐼𝑓𝑎 1 = 𝐼𝑓𝑎 2 

𝑍 = 
−𝑉𝑎0 

− 3𝑍 = 𝑗(0.3 − 0.15) = 𝑗0.15 
𝑔𝑜 𝐼𝑎0  

 
𝑍2 

𝑛 

 
 

= 
−𝑉𝑎2 

= 𝑗0.225 
𝐼𝑎2 

𝐼𝑓𝑎 0 = 
1 

𝑗(0.225 + 0.225 + 0.15 + 3 × 0.05) 
= −𝑗1.333 

 

 

Line-to-Line Fault 
 

The faulted segment for an L-L fault is shown in Fig. where it is assumed that the fault has occurred at 
node k of the network. In this the phases b and c got shorted through the impedance Zf . Since the 
system is unloaded before the occurrence of the fault we have 

 

 
(1) 

 

 
Also since phases b and c are shorted we have 



 

 
Therefore from (1) and (2) we have 

 

We can then summarize from (3) 
 

 

(2) 
 
 
 
 

 
(3) 

 
 

 
(4) 

 

herefore no zero sequence current is injected into the network at bus k and hence the zero sequence 
remains a dead network for an L-L fault. The positive and negative sequence currents are negative of 
each other. 

 
Now from Fig. we get the following expression for the voltage at the faulted point 

 

(5) 

Again 
 
 
 
 
 
 
 

 
Moreover since I fa0 = I fb0 = 0 and I fa1 = - I fb2 , we can write 

 

 

Therefore combining (5) - (7) we get 

(6) 
 
 
 

(7) 

 

(8) 

Equations (5) and (8) indicate that the positive and negative sequence networks are in parallel. 

The sequence network is then as shown in Fig. From this network we get 
 



 

 
 

Fig. Thevenin equivalent of an LL fault. 
 

Example 2 
 

Let us consider the same generator as given in Example 1. Assume that the generator is unloaded when 
a bolted ( Zf = 0) short circuit occurs between phases b and c. Then we get from (2) I fb = - I fc . Also since 
the generator is unloaded, we have I fa = 0. 

 
𝑉𝑎𝑛 = 𝐸𝑎𝑛 = 1.0 

𝑉𝑏𝑛 = 𝐸𝑏𝑛 − 𝑗0.225𝐼𝑓𝑏 = 1. ∠ − 1200 − 𝑗0.225𝐼𝑓𝑏 

 
𝑉𝑐𝑛 = 𝐸𝑐𝑛 − 𝑗0.225𝐼𝑓𝑐 = 1. ∠1200 + 𝑗0.225𝐼𝑓𝑏 

Also since V bn = V cn , we can combine the above two equations to get 
1∠ − 1200 − 1∠1200 

 
 

Then 

𝐼𝑓𝑏 = −𝐼𝑓𝑐 = 
𝑗0.45 

= −3.849 

0 0 
𝐼𝑓𝑎012 = 𝐶 [−3.849] = [−𝑗2.2222] 

3.849 𝑗2.2222 
 

We can also obtain the above equation from (9) as 
 

𝐼𝑓𝑎 1 = −𝐼𝑓𝑏2 = 
1 

𝑗0.225 + 𝑗0.225 

 
= −𝑗2.222 

Also since the neutral current I n is zero, we can write V a = 1.0 and 

𝑉𝑏 = 𝑉𝑐 = 𝑉𝑏𝑛 = 𝑉𝑏𝑛 = −0.5 

 
Hence the sequence components of the line voltages are 

 

1.0 0 
𝑉𝑎012 = 𝐶 [−0.5] = [0.5] 

 
Also note that 

−0.5 0.5 

𝑉𝑎1 = 1.0 − 𝑗0.2251𝐼𝑓𝑎1 

𝑉𝑎2 = −𝑗0.2251𝐼𝑓𝑎2 = 0.5 

which are the same as obtained before. 
 

 
Double- Line -to Ground Fault 

http://nptel.ac.in/courses/108104051/chapter_8/examp_8.1.html


The faulted segment for a 2LG fault is shown in Fig. where it is assumed that the fault has occurred at 
node k of the network. In this the phases b and c got shorted through the impedance Zf to the ground. 

 

  (1) 

Fig. Representation of 2LG fault. 

 
Also voltages of phases b and c are given by 

 

 

 
Therefore 

 

 

We thus get the following two equations from (3) 
 

 

 

Substituting (8.18) and (8.20) in (8.21) and rearranging we get 
 

 
Also since I fa = 0 we have 

 

 
The Thevenin equivalent circuit for 2LG fault is shown in Fig. 8.8. From this figure we ge 

(2) 
 
 
 
 
 

(3) 
 

 
(4) 

 
 

 
(5) 

 
 

 
(6) 

 
 

 
(7) 



 
 
 
 
 

 

 
 
 

 

 
Fig. Thevenin equivalent of a 2LG fault. 

 
 

Example 3 

 
 
 
 
 
 
 
 

 
(10) 

(8) 
 
 
 

(9) 

 

Let us consider the same generator as given in Examples 1 and 2. Let us assume that the generator is 
operating without any load when a bolted 2LG fault occurs in phases b and c. The equivalent circuit for 
this fault is shown in Fig. 8.9. From this figure we can write 

 

 

 



 

 

Fig. Equivalent circuit of the generator for a 2LG fault in phases b and c. 

 
Combining the above three equations we can write the following vector-matrix form 

 
Solving the above equation we get 

Hence 

We can also obtain the above values using (8)-(10). Note from Example 1 that 

𝑍1 = 𝑍2 = 𝑗0.225, 𝑍0 = 𝑗(0.15 + 3 × 0.05) = 𝑗0.3  𝑎𝑛𝑑 𝑍𝑓 = 0 

Then  
𝐼𝑓𝑎 1 = 

1 

𝑗0.225 + (
𝑗0.225 × 𝑗0.3 

 

= −𝑗2.8283 

 

 
 

𝐼 = −𝐼 
𝑗0.225 

= 𝑗1.2121 
 

 

𝑓𝑎 0 𝑓𝑎1 𝑗0.525 



 

Now the sequence components of the voltages are 

𝑉𝑎1 = 1.0 − 𝑗0.225𝐼𝑓𝑎1 = 0.3636 

 
𝑉𝑎2 = 𝑗0.225𝐼𝑓𝑎2 = 0.3636 

𝑉𝑎0 = −𝑗0.3𝐼𝑓𝑎0 = 0.3636 

 
Also note from above Fig. that 

𝑉𝑎 = 𝐸𝑎𝑛 + 𝑉𝑛 + 𝑗0.0225(𝐼𝑓𝑏 + 𝐼𝑓𝑐 ) = 1.0909 

 
and Vb = Vc = 0. Therefore 

which are the same as obtained before. 



UNIT III 

LOAD FLOW STUDIES 

Load Flow Study (Or) Power Flow Study 
The study of various methods of solution to power system network is referred to as load 

flow study. The solution provides the voltages at various buses, power flowing in various lines 

and line-losses. 

The following work has to be performed for a load flow study. 

(i) Representation of the system by single line diagrams. 

(ii) Determining the impedance diagram using the information in single line 

diagram. 

(iii) Formulation of network equations. 

(iv) Solution of network equations. 

 

Information’s that are obtained from a load flow study 
The information obtained from a load flow study is magnitude and phase angle of 

voltages, real and reactive power flowing in each line and the line losses. The load flow 

solution also gives the initial conditions of the system when the transient behavior of the 

system is to be studied. 

Need for load flow study 
The load flow study of a power system is essential to decide the best operation of existing 

system and for planning the future expansion of the system. It is also essential foe designing a 

new power system. 

Quantities associated with each bus in a system 
Each bus in a power system is associated with four quantities and they are real power 

(P), reactive power (Q), magnitude of voltage (V), and phase angle of voltage (δ). 

 

Different types of buses n a power system 
 

 
Types of bus  

 

Known or specified 

quantities 

 
 

Unknown quantities or 

quantities to be 

determined. 

Slack or Swing or 
Reference bus 

V, δ P,Q 

Generator or Voltage 
control or PV bus 

P, V Q, δ 

Load or PQ bus P, Q V, δ 



Need for slack bus 
The slack bus is needed to account for transmission line losses. In a power system the total power 

generated will be equal to sum of power consumed by loads and losses. In a power system only the 

generated power and load power are specified for buses. The slack bus is assumed to generate the 

power required for losses. Since the losses are unknown the real and reactive power are not specified 

for slack bus. 

Iterative methods to solve load flow problems 
The load flow equations are non linear algebraic equations and so explicit solution as not possible. 

The solution of non linear equations can be obtained only by iterative numerical techniques. 

 

Mainly used for solution of load flow study 
 The Gauss seidal method,

 Newton Raphson method

 Fast decouple methods.

 
Flat voltage start 
In iterative method of load flow solution, the initial voltages of all buses except slack bus assumed as 

1+j0 p.u. This is refereed to as flat voltage start 

 

Effect of acceleration factor in load flow study 
Acceleration factor is used in gauss seidal method of load flow solution to increase the rate of 

convergence. Best value of A.F=1.6 

 

Generator buses are treated as load bus 
If the reactive power constraints of a generator bus violates the specified limits then the generator is 

treated as load bus. 

 

Advantages and disadvantages of Gauss serial method 
 

Advantages: Calculations are simple and so the programming task is lessees. The memory 

requirement is less. Useful for small systems; 

 

Disadvantages: Requires large no. of iterations to reach converge .Not suitable for large systems. 

Convergence time increases with size of the system 

 

Advantages and disadvantages of N.R method 
 

Advantages: Faster, more reliable and results are accurate, require less number of iterations; 

 

Disadvantages: Program is more complex, memory is more complex. 



 

Compare the Gauss seidel and Newton raphson methods of load flow study 
 

S.No G.S N.R FDLF 

1 Require large   number   of 
iterations to reach 

convergence. 

Require less   number   of 
iterations to reach 

convergence. 

Require more number of 
iterations than N.R 

method. 

2 Computation time per 
iteration is less 

Computation time per 
iteration is more 

Computation time per 
iteration is less 

3 It has linear convergence 

characteristics 

It has quadratic 

convergence 
characteristics 

------ 

4 The number of iterations 

required for convergence 

increases with size of the 
system 

The number of iterations 

are independent of the size 

of the system 

The number of iterations 

are does not dependent of 

the size of the system 

5 Less memory requirements. More memory 

requirements. 

Less memory 

requirements than 

N.R.method. 

 
Gauss-Seidel method 

 
The step by step computational procedure for the Gauss-Seidel method of load flow studies 

 

Algorithm when PV buses are present 

 
1) Read the system data and formulate YBUS for the given power system network. 

2) Assume a flat voltage profile (1+j0) for all the bus voltages except the slack bus. Let slack bus 
voltage be (a+j0) and it is not modified in any iteration. 

3) Assume a suitable value of € called convergence criterion. Here € is a specified change in the bus 

voltage that is used to compare the actual change in bus voltage between and iteration. Kth and 

(k+1) th iteration 

4) Set iteration count k= 0 

 
5) Set bus count p=1. 

6) Check for slack bus. If it is a slack bus then go to step (13), otherwise go to next step. 

7) Check for generator bus. If it is a generator bus go to next step, otherwise go to step (9) 

8) Replace the value of the voltage magnitude of generator bus in that iteration by the specified 

value. Keep the phase angle same as in that iteration. Calculate Q for generator bus. 

 

The reactive power of the generator bus can be calculated by using the following equation 



 

 

 

The calculated reactive power may be within specified limits or it may violate the limits. If the 

calculated reactive power violates the specified limit for the reactive power then treat this bus as the 

load bus. The magnitude of the reactive power at this bus will correspond to the limit it has violated 
 

 

Since the bus is treated as load bus, take actual value of Vpk for (k+1) th iteration 
 

i.e. | Vpk | need not be replaced by |Vp | sep when the generator bus is treated as 

load bus. Go to step (10). 

 
9) For generator bus the magnitude of voltage does not change and so for all iterations the magnitude 

of bus voltage is the specified value only. The phase of the bus voltage can be calculated as shown 

below. 
 

 



 

 
 

EXAMPLE 
 

1) Fig. shows a three bus power system. 

Bus 1 : Slack bus, V= 1.05/00 p.u. 

Bus 2 : PV bus, V = 1.0 p.u. Pg = 3 p.u. 

Bus 3 : PQ bus, PL = 4 p.u., QL = 2 p.u. 

Carry out one iteration of load flow solution by Gauss Seidel method. 



1 

1 

1 

 

1 2 

 
 
 
 
 
 
 

Neglect limits on reactive power generation. 
 

 
Solution 

 

Admittance of each line 
 

y = =   
1

 
 

= −𝑗2.5 𝑝. 𝑢 
12 𝑍12

 𝑗0.4 
 

y = =   
1

 
 

= −𝑗3.333 𝑝. 𝑢 
13 𝑍13

 𝑗0.3 
 

y = =   
1

 
 

= −𝑗5 𝑝. 𝑢 
23 𝑍23

 𝑗0.2 
 

𝑌11 = 𝑦12 + 𝑦13 = −𝑗2.5 − 𝑗3.333 = −𝑗5.833 𝑝. 𝑢 

𝑌22 = 𝑦12 + 𝑦23 = −𝑗2.5 – 𝑗5 = −𝑗7.5 𝑝. 𝑢 

𝑌33 = 𝑦13 + 𝑦23 = −𝑗3.333 − 𝑗5 = −𝑗8.333 𝑝. 𝑢 

𝑌12 = 𝑌21 = −𝑦12 = −(−𝑗2.5 ) = 𝑗2.5 𝑝. 𝑢 

𝑌13 = 𝑌31 = −𝑦13 = −(−𝑗3.33 ) = 𝑗3.33 𝑝. 𝑢 

𝑌23 = 𝑌32 = −𝑦23 = −(−𝑗5 ) = 𝑗5 𝑝. 𝑢 
 

The admittance matrix is given as 

𝑦12 + 𝑦13 −𝑦12 −𝑦13 

Ybus=| −𝑦21 𝑦21 + 𝑦23 −𝑦23 | 
−𝑦31 −𝑦32 𝑦32 + 𝑦31 

j0.3 j0.2 

3 

   

j0.4 
  

 



1 

2 

3 

1 

2 

p,temp 

2𝑐𝑎𝑙 

𝑝 

2 

2 

= −𝑗5.833 𝑗2.5 𝑗3.33 
=| 𝑗2.5 −𝑗7.5 𝑗5 | 

𝑗3.33 𝑗5 −𝑗8.333 
 

Assume initial voltages to all buses 

V (0)= 1.05∠00=1.05+j0 p.u 

V (0)=1.0+j0 p.u 

V (0)=1.0+j0 p.u 

Bus 1 is a slack bus 
 

V (1)= 1.05∠00=1.05+j0 p.u 
 

Bus 2 is a generator bus 
 

To calculate reactive power 
 

𝑝−1 

𝑄𝑘+1  = (−1) × 𝐼𝑚 {(𝑉𝑘)
∗ 
[∑ 𝑌 

𝑛 

𝑉𝑘+1 + ∑ 𝑌 
 
𝑉𝑘]} 

𝑝,𝑐𝑎𝑙 𝑝 

𝑞=1 

𝑝𝑞   𝑞  
𝑞=𝑝 

𝑝𝑞   𝑞 

 

𝑄1 = (−1) × 𝐼𝑚{(𝑉0)∗[𝑌21𝑉1 + 𝑌22𝑉0 + 𝑌23𝑉0]} 
2𝑐𝑎𝑙 2 1 2 3 

=(−1) × 𝐼𝑚(1 − 𝑗0)[(𝑗2.5)(1.05 + j0) + (−𝑗7.5)(1 + 𝑗0) + (𝑗5)(1 + 𝑗0)]} 

𝑄1 = − 0.125 p.u 

The phase of bus -2 voltage in first iteration is given by phase of V K+1 
 

When p=3 𝑄1= − 0.125 p.u and k=0 
 

 
1 𝑃 − 𝑗𝑄 𝑝−1 𝑛 

𝑉𝑘+1 = [ 
𝑝 

 
 

𝑝 − ∑ 𝑌   𝑉𝑘+1 −  ∑� 𝑌 𝑉𝑘 ] 
𝑃,𝑡𝑒𝑚𝑝 𝑌𝑝𝑝 (𝑉𝑘 )

∗
 

𝑝𝑞   𝑞 

𝑞=1 
 

𝑞=𝑝+1 

𝑝𝑞   𝑞 

 

1 𝑃 − 𝑗𝑄 2−1 3 

𝑉0+1 = [ 2 2 − ∑ 𝑌 
 

 

𝑉0+1 −  ∑ 𝑌 𝑉0] 
2,𝑡𝑒𝑚𝑝 𝑌22 (𝑉0)∗  

𝑞=1 

2𝑞   𝑞  
𝑞=2+1 

2𝑞   𝑞 

 

𝑉1 = 
1

 𝑃2 − 𝑗𝑄2 
− 𝑌

 
 

 

 𝑉1 − 𝑌  𝑉0] 
2,𝑡𝑒𝑚𝑝 

𝑌22 
[
 

(𝑉0)∗ 
21   1 23   3 

1 
 

 

−𝑗7.5 
[3+𝑗0.125 − (𝑗2.5)(1.05 + 𝑗0) − (𝑗5)(1 + 𝑗0)] 

1−𝑗 0 
= 



𝑝 ) 

3 ) 

1−𝑗 0 

3 

3 

𝑉1=  
1

 [3 − 𝑗7.5] = 1.077∠21.80 V 

 
δ 1=∠𝑉1 = 21.80 V 

2    −𝑗 7.5 

2 2,𝑡𝑒𝑚𝑝 
 

|𝑽𝟐𝟏| = |𝑽𝟐 |𝒔𝒑𝒄∠δ21=1.0∠21.80 

|𝑽𝟐𝟏| = 𝟎. 𝟗𝟐𝟖𝟒𝟐𝟗 + 𝒋𝟎. 𝟑𝟕𝟏𝟑 𝑽 

Bus 3 Load Bus 
 

The specified powers are load powers and so they considered as negative powers 
 

P3= ‒PL= ‒4 

Q3= ‒QL= ‒2 
 
 

𝑉𝑘+1 =   
1 

 

[
𝑃𝑝 −𝑗𝑄𝑝 − ∑𝑝−1 𝑌  

 

 

 
𝑉𝑘+1 − ∑𝑛 

 

 
𝑌  𝑉𝑘] 

𝑃 𝑌𝑝𝑝 (𝑉𝑘   ∗ 𝑞=1 𝑝𝑞   𝑞 𝑞=𝑝+1 𝑝𝑞   𝑞 

𝑉1 = 
1 

[
𝑃3 −𝑗𝑄3 − 𝑌31 𝑉

1 − 𝑌32 𝑉
1] 

3 𝑌33 (𝑉0   ∗ 1 2 
 

1 
 

 

−𝑗8.333 
[−4+𝑗2 − (𝑗3.33)(1.05 + 𝑗0) − (𝑗5)(𝟎. 𝟗𝟐𝟖𝟒𝟐𝟗 + 𝒋𝟎. 𝟑𝟕𝟏𝟑5)] 

𝑉1 = 0.7806∠ − 19.240 
 

𝑉1 = 0.737046 − 𝑗0.25724 𝑝. 𝑢 

 

 
2) Carry out one iteration of load flow analysis of the system given below by Gauss-Seidal method 

 

Bus no Bus type P Q V p.u 

1 Slack - - 1.02 

2 P-V 0.8 0.1 ≤ Q ≤ 1 1 

3 P-Q 1.0 0.4 - 

Line reactance in p.u 
 

Bus code Impedance 

1-2 j0.5 

2-3 j0.5 

3-1 j0.5 

= 



1 

1 

1 

j0.5 j0.5 

3 

 

1 2 

 
 

 
 

y = =   
1

 
 

 
= −𝑗2 𝑝. 𝑢 

12 𝑍12
 𝑗0.5 

y = =   
1

 
 

= −𝑗2 𝑝. 𝑢 
13 𝑍13

 𝑗0.5 

y = =   
1

 
 

= −𝑗2 𝑝. 𝑢 
23 𝑍23

 𝑗0.5 

 

𝑌11 = 𝑦12 + 𝑦13 = −𝑗2 – 𝑗2 = −𝑗4 𝑝. 𝑢 

𝑌22 = 𝑦12 + 𝑦23 = −𝑗2 – 𝑗2 = −𝑗4 𝑝. 𝑢 

𝑌33 = 𝑦13 + 𝑦23 = −𝑗2 – 𝑗2 = −𝑗4 𝑝. 𝑢 

𝑌12 = 𝑌21 = −𝑦12 = −(−𝑗2) = 𝑗2. 𝑝. 𝑢 

𝑌13 = 𝑌31 = −𝑦13 = −(−𝑗2) = 𝑗2. 𝑝. 𝑢 

𝑌23 = 𝑌32 = −𝑦23 = −(−𝑗2) = 𝑗2. 𝑝. 𝑢 
 

The admittance matrix is given as 

𝑦12 + 𝑦13 −𝑦12 −𝑦13 

Ybus=| −𝑦21 𝑦21 + 𝑦23 −𝑦23 | 
−𝑦31 −𝑦32 𝑦32 + 𝑦31 

−𝑗4 𝑗2 𝑗2 
=| 𝑗2 −𝑗4 𝑗2 | 

𝑗2 𝑗2 −𝑗4 
 

Assume initial voltages to all buses 

V1
(0)= 1.02∠00=1.02+j0 p.u 

V2
(0)=1.0+j0 p.u 

V3
(0)=1.0+j0 p.u 

   

j0.5 
  

 



1 

2𝑐𝑎𝑙 

2 

𝑝 

2 

𝑝 ) 

3 

Bus 1 is a slack bus 

 
V (1)= 1.02∠00=1.02+j0 p.u 

 
Bus 2 is a generator bus 

 
To calculate reactive power 

 

𝑝−1 

𝑄𝑘+1  = (−1) × 𝐼𝑚 {(𝑉𝑘)
∗ 
[∑ 𝑌 

𝑛 

𝑉𝑘+1 + ∑ 𝑌 
 
𝑉𝑘]} 

𝑝,𝑐𝑎𝑙 𝑝 

𝑞=1 

𝑝𝑞   𝑞  
𝑞=𝑝 

𝑝𝑞   𝑞 

 

 
𝑄1 = (−1) × 𝐼𝑚{(𝑉0)∗[𝑌21𝑉1 + 𝑌22𝑉0 + 𝑌23𝑉0]} 

2𝑐𝑎𝑙 2 1 2 3 
 

=(−1) × 𝐼𝑚(1 − 𝑗0)[(𝑗2)(1.02 + j0) + (−𝑗4)(1 + 𝑗0) + (𝑗2)(1 + 𝑗0)]} 

 
𝑄1 = − 0.04p.u 

 
This value is not with in the specified limit .so treat this bus as load bus 

Q2=0.1 P2=0.3 and V 0=1.0+j0 

1 𝑃 − 𝑗𝑄 𝑝−1 𝑛 

𝑉𝑘+1 = 
[ 
𝑝 

 
 

𝑝 − ∑ 𝑌   𝑉𝑘+1 −  ∑� 𝑌 𝑉𝑘 ] 
𝑃 𝑌𝑝𝑝 (𝑉𝑘 )

∗
 

𝑝𝑞   𝑞 

𝑞=1 
 

𝑞=𝑝+1 

𝑝𝑞   𝑞 

 

=  
1 

[
𝑃2 − 𝑗𝑄2 

− 𝑌
 

 
  

 
𝑉1 − 𝑌 

 
𝑉0] 

𝑌22 (𝑉0)∗ 
21 1 23   3 

1 

−𝑗4 
[
0.8�− 𝑗0.1 

− (𝑗2)(1.02 + 𝑗0) − (𝑗2)(1 + 𝑗0)] 
1 − 𝑗0 

 

= 
 

|𝑽𝟐𝟏| = 𝟏. 𝟎𝟑𝟓 + 𝒋𝟎. 𝟐 = 𝟏. 𝟎𝟓𝟒∠𝟏𝟎. 𝟗𝟑𝟎 𝑽 
 

Bus 3 Load Bus 

 
P3= ‒PL= ‒1 

Q3= ‒QL= ‒0.4 

 
The specified powers are load powers and so they considered as negative powers 

𝑉𝑘+1 = 
1 [

𝑃𝑝 −𝑗𝑄𝑝 − ∑𝑝−1 𝑌  
 

𝑉𝑘+1 − ∑𝑛 𝑌   𝑉𝑘] 
𝑃 𝑌𝑝𝑝 (𝑉𝑘   ∗ 𝑞=1 𝑝𝑞   𝑞 𝑞=𝑝+1 𝑝𝑞   𝑞 

 

𝑉1 = 
1

 
[
𝑃3 − 𝑗𝑄3 

− 𝑌
 

 
 

 
𝑉1 − 𝑌 

 
𝑉1] 

3 𝑌33 (𝑉0)∗ 
31 1 32   2 



3 

 

= 
1 

−𝑗4 
[
−1 + 𝑗0.4 

− (𝑗2)(1.02 + 𝑗0) − (𝑗2)(𝟎𝟏. 𝟎𝟑𝟓 + 𝒋𝟎. 𝟐)] 
1 − 𝑗0 

 

 

𝑉1 = 
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V 
ECONOMIC OPERATION OF POWER 

SYSTEM 

One of the earliest applications of on-line centralized control was to provide a central facility, to 

operate economically, several generating plants supplying the loads of the system. Modern 

integrated systems have different types of generating plants, such as coal fired thermal plants, hydel 

plants, nuclear plants, oil and natural gas units etc. The capital investment, operation and 

maintenance costs are different for different types of plants. 

The operation economics can again be subdivided into two parts. 
 

i) Problem of economic dispatch, which deals with determining the power output of each plant to meet 

the specified load, such that the overall fuel cost is minimized. 

ii) Problem of optimal power flow, which deals with minimum – loss delivery, where in the power 

flow, is optimized to minimize losses in the system. In this chapter we consider the problem of 

economic dispatch. 

During operation of the plant, a generator may be in one of the following states: 
 

i) Base supply without regulation: the output is a constant. 
 

ii) Base supply with regulation: output power is regulated based on system load. 
 

iii) Automatic non-economic regulation: output level changes around a base setting as area control 

error changes. 

iv) Automatic economic regulation: output level is adjusted, with the area load and area control error, 

while tracking an economic setting. 

Regardless of the units operating state, it has a contribution to the economic operation, even though 

its output is changed for different reasons. The factors influencing the cost of generation are the 

generator efficiency, fuel cost and transmission losses. The most efficient generator may not give 

minimum cost, since it may be located in a place where fuel cost is high. Further, if the plant is 

located far from the load centers, transmission losses may be high and running the plant may 

become uneconomical. The economic dispatch problem basically determines the generation of 

different plants to minimize total operating cost. Modern generating plants like nuclear plants, geo-

thermal plants etc, may require capital investment of millions of rupees. The economic 

dispatch is however determined in terms of fuel cost per unit power generated and does not include 

capital investment, maintenance, depreciation, start-up and shut down costs etc. 



 

 

 

 

PERFORMANCE 

CURVES INPUT-

OUTPUT CURVE 

This is the fundamental curve for a thermal plant and is a plot of the input in British thermal 

units (Btu) per hour versus the power output of the plant in MW as shown in Fig.4.1 

 

 

Fig.4.1: Input output curve 
 

HEAT RATE CURVE 
 

The heat rate is the ratio of fuel input in Btu to energy output in KWh. It is the slope of the input 

– output curve at any point. The reciprocal of heat – rate is called fuel – efficiency. The heat rate 

curve is a plot of heat rate versus output in MW. A typical plot is shown in Fig . 



 

 

 
 

Fig.4.2: Heat Rate Curve 
 

INCREMENTAL FUEL RATE CURVE 
 

The incremental fuel rate is equal to a small change in input divided by the corresponding change in 

output. 

Incremental fuel rate =∆Input/∆Output 

The unit is again Btu / KWh. A plot of incremental fuel rate versus the output is shown in 

Fig.4.3 

Fig 4.3: Incremental Fuel Rate Curve 



 
 

Incremental cost curve 

The incremental cost is the product of incremental fuel rate and fuel cost (Rs / Btu or $/Btu). The 

curve in shown in Fig.4.4. The unit of the incremental fuel cost is Rs / MWh or $ /MWh. 

 

 
Fig. 4.4: Incremental Cost curve 

 
In general, the fuel cost Fi for a plant, is approximated as a quadratic function of the 

generated output PGi. 

F  a  b P  c P 
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The incremental fuel cost is given by 

 

dFi  b  2c P 
 

Rs/MWh 
 

dPGi 
i    Gi 

 

The incremental fuel cost is a measure of how costly it will be produce an increment of power. The 

incremental production cost, is made up of incremental fuel cost plus the incremental cost of 

labour, water, maintenance etc. which can be taken to be some percentage of the incremental fuel 

cost, instead of resorting to a rigorous mathematical model. The cost curve can be approximated by 

a linear curve. While there is negligible operating cost for a hydel plant, there is a limitation on 

the power output possible. In any plant, all units normally operate between PGmin, the 

 



 
 

minimum loading limit, below which it is technically infeasible to operate a unit and PGmax, 

which is the maximum output limit. 

ECONOMIC GENERATION SCHEDULING NEGLECTING LOSSES AND 
GENERATOR LIMITS 

 

In an early attempt at economic operation it was decided to supply power from the most efficient 

plant at light load conditions. As the load increased, the power was supplied by this most 

efficient plant till the point of maximum efficiency of this plant was reached. With further 

increase in load, the next most efficient plant would supply power till its maximum efficiency is 

reached. In this way the power would be supplied by the most efficient to the least efficient plant to 

reach the peak demand. Unfortunately however, this method failed to minimize the total cost of 

electricity generation. We must therefore search for alternative method which takes into account 

the total cost generation of all the units of a plant that is supplying a load. 

The simplest case of economic dispatch is the case when transmission losses are neglected. The 

model does not consider the system configuration or line impedances. Since losses are neglected, 

the total generation is equal to the total demand PD. 

Consider a system with ng number of generating plants supplying the total demand PD. If Fi is the 

cost of plant i in Rs/h, the mathematical formulation of the problem of economic scheduling can 

be stated as follows: 

 

 

Minimize 

ng 

FT     Fi 

 

 

ng 

Such that  PGi  PD 

 

 
 

Where FT= total cost 

PGi= generation of plant i 

PD= total demand 

This is a constrained optimization problem, which can be solved by Lagrange’s Method. 

 

LAGRANGE METHOD FOR SOLUTION OF ECONOMIC SCHEDULE 



 

 

The problem is restated below: 

ng 

Minimize FT     Fi 

 

 
Such that 
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PD   PGi  0 
 

The augmented cost function is given by 
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L  FT    (PD     PGi ) 
 

 

The minimum is obtained when 
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The second equation is simply the original constraint of the problem. The cost of a plant Fi 

depends only on its own output PGi, hence 

 

 

Using the above, 
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We can write bi  2ci PGi   i = 1, 2, ---------- , ng 

 



 
 

The above equation is called the co-ordination equation. Simply stated, for economic generation 

scheduling to meet a particular load demand, when transmission losses are neglected and 

generation limits are not imposed, all plants must operate at equal incremental production costs, 

subject to the constraint that the total generation be equal to the demand. 

ECONOMIC SCHEDULE INCLUDING LIMITS ON GENERATOR (NEGLECTING LOSSES) 

The power output of any generator has a maximum value dependent on the rating of the 

generator. It also has a minimum limit set by stable boiler operation. The economic dispatch 

problem now is to schedule generation to minimize cost, subject to the equality constraint. 

 

ng 

 PGi 
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and the inequality constraint 

 
PGi(min)  ≤ PGi ≤  PGi(max) i = 1, 2, ……… ng 

 
The procedure followed is same as before i.e. the plants are operated with equal incremental fuel 

costs, till their limits are not violated. As soon as a plant reaches the limit (maximum or 

minimum) its output is fixed at that point and is maintained a constant. The other plants are 

operated at equal incremental costs. 

ECONOMIC DISPATCH INCLUDING TRANSMISSION LOSSES 
 

When transmission distances are large, the transmission losses are a significant part of the 

generation and have to be considered in the generation schedule for economic operation. The 

mathematical formulation is now stated as 

 

 

Minimize 
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FT     Fi 

 

 

 

Such that 
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 PGi  PD  PL 

 

 

Where PL is the total loss 

The Lagrange function is now written as 
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(same as the constraint) 
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The term 
1 

is called the penalty factor of plant i, Li. The coordination equations including 
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losses are given by  
  

dF
i  L 

 

 
 

i=1,2, .......... ,ng 

dPGi 

 

The minimum operation cost is obtained when the product of the incremental fuel cost and the 

penalty factor of all units is the same, when losses are considered. 

A rigorous general expression for the loss PL is given by 
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Where Bmn is called loss coefficient, depends on load composition. 

For a two plant system 
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AUTOMATIC LOAD DISPATCH 
 

Economic load dispatching is that aspect of power system operation wherein it is required to 

distribute the load among the generating units actually paralleled with the system in such a manner 

as to minimize the cost of supplying the minute to minute requirements of the system. In a large 

interconnected system it is humanly impossible to calculate and adjust such generations and hence 

the help of digital computer system along with analogue devices is sought and the whole 

process is carried out automatically; hence called automatic load dispatch. The objective of 

automatic load dispatch is to minimise the cost of supplying electricity to the load points while 

ensuring security of supply against loss of generation and transmission capacity and also 

maintaining the voltage and frequency of the system within specified limits. Since the 

interconnection is growing bigger and bigger in size with time, the control engineer has to make 

adjustments to various parameters in the system. Hence automatic control of load dispatch problem 

is required. The chosen control system is invariably based on a digital computer working on-

line. 

The components for automatic load dispatching are 

 
Computer-The computer predicts the load and suggests economic loading. It transmits information 

to machine controller. 



 

 

 
 

Fig.4.5: Schematic diagram of automatic load dispatching components 
 

Data Input: The computer receives a lot of data from the telemetering system and from the paper 

tape. Telemetering data comes to the computer either as analog signals representing line power 

flows, plant outputs or as signal bits indicating switch or isolator positions. Paper tape stores all the 

basic data required e.g. the system parameters, load predictions, security constraints, etc. 

Console: It is the component through which the operator can converse with the computer. He can 

obtain certain information required for some action to be taken under emergency condition or he 

can put data into it if needed. The console has the facilities of security checking and load flows 

for the network calculations. 

Machine Controller: The computer sends information regarding the optimal generation to the 

machine controller at regular intervals which in turn implements them. Control on each machine is 

applied by a closed loop system which uses a measure of actual power generated and which 

operates through a conventional speeder motor. These are referred to as controller power loops. In 

the power frequency loop an error signal proportional to the difference between the derived and 

actual frequency and power is developed. A summed error signal is formed from these two 

components and is converted in the motor controller to a train of pulses that are applied to a speed 

governor reference setting motor called the speeder motor. The duration and amplitude of these 

pulses are fixed but the pulse rate is made proportional to the summed error signal. The pulses are 

applied as raise or lower command to the speeder motor in accordance with the error signal and 

thus the output of the generator is increased or decreased accordingly. 



 
 

HYDROTHERMAL SCHEDULING LONG AND SHORT TERMS- 

Long-Range Hydro-Scheduling: 
 

The long-range hydro-scheduling problem involves the long-range forecasting of water 

availability and the scheduling of reservoir water releases (i.e., “drawdown”) for an interval of 

time that depends on the reservoir capacities. Typical long-range scheduling goes anywhere from 1 

week to 1 yr or several years. For hydro schemes with a capacity of impounding water over 

several seasons, the long-range problem involves meteorological and statistical analyses. 

Short-Range Hydro-Scheduling 
 

Short-range hydro-scheduling (1 day to 1 wk) involves the hour-by-hour scheduling of all 

generation on a system to achieve minimum production cost for the given time period. In such a 

scheduling problem, the load, hydraulic inflows, and unit availabilities are assumed known. A set 

of starting conditions (e.g., reservoir levels) is given, and the optimal hourly schedule that 

minimizes a desired objective, while meeting hydraulic steam, and electric system constraints, 

is sought. Hydrothermal systems where the hydroelectric system is by far the largest 

component may be scheduled by economically scheduling the system to produce the minimum 

cost for the thermal system. The schedules are usually developed to minimize thermal 

generation production costs, recognizing all the diverse hydraulic constraints that may exist. 

 

 

Fig. 4.6: Hydro Scheduling 
 

The hydroplant can supply the load by itself for a limited time. That is, for any time period j, 
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The energy available from the hydroplant is insufficient to meet the load. 
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Steam plant energy required is 

 
jmax jmax 

 Ploadj 
n 

j 
  PHj 

n 
j 

 E 
  

 
N 

Where E   Psj n j 
 

 

Ns is the no of periods the steam plant is on 
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So the scheduling problem and the constraint are 
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So steam plant should be run at constant incremental cost for the entire period it is on. Let this 

optimum value of steam-generated power be P 
*
, which is the same for all time intervals the 

steam unit is on. 

The total cost over the interval is 
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Ts is the total run time for the steam plant 
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Minimizing FT , we get P
*
  

 
So the unit should be operated at its maximum efficiency point ( 

*
) long enough to 

Ps 

supply the energy needed, E. Optimal hydrothermal schedule is as shown below: 

 

 

Fig.4.7: Optimal 

Hydrothermal Scheduling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT VI 

STABILITY ANALYSIS 

MODULE-IV 
 

Stability of power system is its ability to return to normal or stable operating condition after been 

subjected to some of disturbance. Instability means a condition representing loss of synchronism 

or fall out of step. 

The instability of power system is divided into two parts 

1. Steady state stability 

2. Transient stability 

Increase in load is a kind of disturbance to power system. If the increase in load takes place 

gradually and slowly in small steps and the system withstand this change in load and operates 

satisfactorily then this system phenomena is said to be STEADY STATE STABILITY. 

Cause of transient disturbances 

1. Sudden change of load. 

2. Switching operation. 

3. Loss of generation. 

4. Fault. 

Due to the following sudden disturbances in the power system, rotor angular difference, rotor 

speed and power transfer undergo fast changes whose magnitude are dependent upon the severity 

of disturbances. 

If the disturbance is so large that the angular difference increases so much which can cause the 

machine out of synchronism. This kind of instability is denoted as transient instability. It is a 

very fast phenomenon it occurs within one second for the generating unit closer to the 

disturbance. 

 

Dynamics Of A Synchronous Machine 
 

The kinetic energy of the rotor at synchronous machine is 

KE  
1 

J 2 
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J =rotor moment of inertia in kg-m
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now inertia constant h be written as  
GH  KE  

1 
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2 
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mj (4.3) 

 

g =machine rating(base)in mva(3-phase) 

h =inertia constant in mj/mva or mw-s/mva 

so, 
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Taking G as base, the inertia constant in pu is 
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Swing Equation 
 

The differential equation that relates the angular momentum M, acceleration power Pa and the 

rotor angle  is known as swing equation. Solution of swing equation shows how the rotor angle 

changes with respect time following a disturbance. The plot  Vs t is known as swing curve. The 

differential equation governing the rotor dynamics can then be written as. 

d 2



where, 

J  m  Tm  Te 
dt2 

(4.8) 

J = rotor moment of inertia in kg-m
2
, m = angle in radian (mech.) 
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Fig. 4.1 Electrical and mechanical power flow in motor 

 

While the rotor undergoes dynamics as per Equation (9), the rotor speed changes by 

insignificant magnitude for the time period of interest (1s) 

Equation (4.8) can therefore be converted into its more convenient power form by assuming the 

rotor .speed (ωsm). Multiplying both sides of Equation (4.8) by ωsm we can write 

d 
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Where, 

Jsm
 m  10 

dt
2
 

 Pm  Pe MW (4.9) 

Pm= mechanical power input in MW 

 
Pe=electrical power output in MW; stator copper loss is assumed neglected. 

Rewriting Equation (4.9) 
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ϴe =angle in rad.(elect.) 
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As it is more convenient to measure the angular position of the rotor with respect to a 

synchronously rotating frame of reference. 

 

Let us assume,  
  e  st 

 
 

(4.13) 

δ is rotor angular displacement from synchronously rotating reference frame, called 

Torque Angle/Power Angle. 

From Equation (4.9) 
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Hence Equation (4.11) can be written in terms of 𝛿 as 

d 
2

M 
dt

2
 
 Pm  Pe MW (4.15) 

 

Using Equation (4.11) we can also write 
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Dividing throught by G, the MVA rating of the machine 
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Pm Pe pu 

Equation (4.17) is called as swing equation and it describes the rotor dynamics for a synchronous 

machine (generating/motoring). It is a second-order differential equation where the damping 

term (proportional to d 
dt 

) is absent because of the assumption of a loss less machine and the 

fact that the torque of damper winding has been ignored. Since the electrical power Pe depends 

upon the sine of angle  the swing equation is a non-linear second-order differential equation. 
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Multi-Machine System 

In a multi-machine system a common system base must be chosen 

Let 

Gmach=machine rating (base) 

Gsystem=system base 

Equation(18) can then be written as 
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Consider the swing equations of two machines or a common system base. 
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Since the machine rotors swings together (coherently or in unison) 

1   2  

Adding Equation (4.20) and (4.21) 
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Where  
Pm  Pm1  Pm2 

Pe  Pe1  Pe2 
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Heq  H1   H2 

The two machines swinging coherently are thus reduced to a single machine as in Equation (4. 

22), the equivalent inertia in (4.22) can be written as 

H eq 
 H1mach 

G1mach  H 2mach 

G2mach 

system system 

 
(4.23) 

 

The above results are easily extendable to any number of machines swinging coherently. To 

solving the swing equation (Equation (4.23), certain simplifying assumptions are usually made. 

These are: 

1. Mechanical power input to the machine (Pm) remains constant during the period of 

electromechanical transient of interest. In other words, it means that the effect of the turbine 

governing loop is ignored being much slower than the speed of the transient. This assumption 

leads to pessimistic result-governing loop helps to stabilize the system. 

2. Rotor speed changes are insignificant-these have already been ignored in formulating the 

swing equation. 

3. Effect of voltage regulating loop during the transient is ignored, as a consequence the 

generated machine emf remains constant. This assumption also leads to pessimistic results- 

voltage regulator helps to stabilize the system. 

Before the swing equation can be solved, it is necessary to determine the dependence of the 

electrical power output (Pe) upon the rotor angle. 

Simplified Machine Model 

For a non-salient pole machine, the per-phase induced emf-terminal voltage equation under 

steady conditions is. 
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Equation (4.24) during the transient modifies to. 
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The phasor diagram corresponding to Equation (4.25) and (4.26) is drawn in Fig. 4.2. Since 
 

under transient condition, 

assume that 

X 
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 X but X d 

 

remains almost unaffected, it is fairly valid to 
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Fig. 4.2 Phasor diagram of a salient pole machine 
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Fig.4.3 Simplified machine model. 
 

The machine model corresponding to Eq. (4.26) is drawn in Fig. (4.3) which also applies to a 

 
cylindrical rotor machine where 

Power Angle Curve 

/ 
 X 

/ 
 X 

/ 
(transient synchronous reactance). 

For the purposes of stability studies E  , transient emf of generator motor remains constant or is 
 

the independent variable determined by the voltage regulating loop but V, the generator 

determined terminal voltage is a dependent variable. Therefore, the nodes (buses) of the stability 

study network to the ernf terminal in the machine model as shown in Fig.4.4, while the machine 

reactance  ( X d ) is absorbed in the system network as different from a load flow study. Further, 

the loads (other than large synchronous motor) will be replaced by equivalent static admittances 

(connected in shunt between transmission network buses and the reference bus). 

Fig. 4.4 Simplified Machine studied Network 

    



 

 
 

Fig 4.5 Power Angle Curve 
 

This is so because load voltages vary during a stability study (in a load flow study, these remain 

constant within a narrow band). The simplified power angle equation is 

 

 
Where 

Pe   Pmax sin (4.27) 
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The graphical representation of power angle equation (4.28) is shown in Fig. 4.5. The swing 

equation (4.27) can now be written as 
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pu (4.29) 

It is a non linear second-order differential equation with no damping. 

Machine Connected to Infinite Bus 

Figure 4.6 is the circuit model of a single machine connected to infinite bus through a line of 

reactance Xe. In this simple case 

X transfer  X d  Xe

From Eq (4.30) we get  
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Fig. 4.6 Machine connected to infinite bus bar 
 

The dynamics of this system are described in Eq. (4.15 ) as 

 

 

 
 

Two Machine Systems 

H d 2

f dt 2 
 Pm   Pe 

 

pu (4.31) 

The case of two finite machines connected through a line (Xe) is illustrated in Fig. 5 

where one of the machines must be generating and the other must be motoring. Under steady 

condition, before the system goes into dynamics and the mechanical input/output of the two 

machines is assumed to remain constant at these values throughout the dynamics (governor 

action assumed slow).During steady state or in dynamic condition, the electrical power output of 

the generator must be absorbed by the motor (network being lossless). 

 

 

 

 
Fig. 4.7 Two machine system 



 

Thus at all time  
Pm1  Pm2  Pm 

 

 
(4.32) 

 

Pe1  Pem 2  Pe (4.33) 
 

 

 

The swing equations for the two machines can now be written as 

d 2  P  P    P  P   1  f  m1 e1   f  m e  (4.34) 
dt2  

 1 
 
 1 



d 
2  P  P   P  P  

And 
  2    f  m2 e2   f  e m  (4.35) 
dt

2
  

 1 
 
 1 



Subtracting Eq. (36) from Eq. (35) 

d 
2
 (   )  H  H   1 2      f  

1
 

2
 (Pm  Pe ) (4.36) 

dt 
2
 

 
H

eq 



è


d 

2

H1 H 2 



 

Or 
f

 
dt
2
 

Pm Pe (4.37) 

 

Where   1   2  
 H1 H 2 


H eq  

 H1 


 H 2 

(4.38) 

 

The electrical power interchange is given by expression. 

 

Pe 
X d1  X e  X d 2

sin


(4.39) 

 

The swing equation Eq. (4.35) and the power angle equation Eq. (4.39) have the same form as 

for a single machine connected to infinite bus. Thus a two-machine system is equivalent to a 

  

  

  





single machine connected to infinite bus. Because of this, the single-machine (connected to 

infinite bus) system would be studied here. 

Steady State Stability 

The steady state stability limit of a particular circuit of a power system is defined as the 

maximum power that can be transmitted to the receiving end without loss of synchronism. 

Consider the simple system of Fig. 4.7 whose dynamics is described by equations 

d 2
M e 

dt2 
 Pm  Pe MW (4.40) 

M  
H

 

f 

 
in pu system (4.41) 

 

And,  

Pe 



sin
Xd 

 

 Pmax sin





(4.42) 

 

 
 

For determination of steady state stability, the direct axis reactance (Xd) and, voltage behind Xd 

are used in the above equations. Let the system be operating with steady power transfer of 

Pe0=Pm with torque angle  0 as indicated in the figure. Assume a small increment P in the 
 

electric power with the input from the prime mover remaining fixed at Pm (governor response is 

slow compared to the speed of energy dynamics), causing the torque angle to change to 

( 0   ) . Linearizing about the operating point Q0 (Pe0,  0 ) we can written as. 

P  
 Pe  



e  
 




The excursions of  are then described by 

E V 

  



d 2 
M 

dt 2 

or 

 Pm  (Pe0  Pe )  Pe 

d 2  P 
M 

dt 2 

or 

 e  

   0 

  0 (4.43) 

Mp 2  
 Pe 




  0 
 

0 
 

Where 

p  
d

 
dt 

The system stability to small change is determined from the characteristic equation. 

Mp
2
  
p

e    0 

  0 

Its two roots are 
 

1 

 pe  2 

p    
 M 

 

As long as  pe       it positive, the roots are purely imaginary and conjugate and the system 

behaviour is oscillatory about 0 . Line resistance and damper windings of machine, which have 

been ignored in the above modelling, cause the system oscillations to decay. The system is 

therefore stable for a small increment in power so long as 


 
pe 

  0
 

 0 

 

(4.44) 

 

When pe      , is negative, the roots are real, one positive and the other negative but of equal 

magnitude. The torque angle therefore increases without bound upon occurrence of a small 

power increment (disturbance) and the synchronism is soon lost. The system is therefore unstable 

for 



 



0 



 







pe 

    0
 

 0 

 
(4.45) 

 

pe   is known as synchronizing coefficient. This is also called stiffness (electrical) of 

synchronous machine. 

Assuming |E| and |V| to remain constant, the system is unstable, if 
 

 
 

cos0  0 
X 

 

0   90∘ 

 

 
(4.46) 

 

The maximum power that can be transmitted without loss of stability (steady state) occurs for 

0   90∘ 
 

(4.47) 

 

 

Pmax   
X

 (4.48) 

 

If the system is operating below the limit of steady stability condition (Eq.4.48), it may 

continue to oscillate for a long time if the damping is low. Persistent oscillations are a threat to 

system security. The study of system damping is the study of dynamical stability. 

The above procedure is also applicable for complex systems wherein governor action and 

excitation control are also accounted for. The describing differential equation is linerized about 

the operating point. Condition for steady state stability is then determined from the 

corresponding characteristic equation (which now is of order higher than two). 

It was assumed in the above account that the internal machine voltage |E| remains 

constant (i.e., excitation is held constant). The result is that as loading increases, the terminal 

voltage |Vt| dips heavily which cannot be tolerated in practice. Therefore, we must consider the 

steady state stability limit by assuming that excitation is adjusted for every load increase to keep 

|Vt| constant. This is how the system will be operated practically. It may be understood that we 

are still not considering the effect of automatic excitation control. 

E V 

 

 





Some Comment on Steady State Stability 

Knowledge of steady state stability limit is important for various reasons. A system can 

be operated above its transient stability limit but not above its steady state limit. Now, with 

increased fault clearing speeds, it is possible to make the transient limit closely approach the 

steady state limit. 

As is clear from Eq. (4.50), the methods of improving steady state stability limit of a 

system are to reduce X and increase either or both |E| and |V|. If the transmission lines are of 

sufficiently high reactance, the stability limit can be raised by using two parallel lines which 

incidentally also increases the reliability of the system. Series capacitors are sometimes 

employed in lines to get better voltage regulation and to raise the stability limit by decreasing the 

line reactance. Higher excitation voltages and quick excitation system are also employed to 

improve the stability limit. 

Transient Stability 
 

The dynamics of a single synchronous machine connected to infinite bus bars is governed by the 

nonlinear differential equation 

 

d 
2

M 
dt

2
 
 Pm  Pe 

where 

Pe  Pmax sin

or 
d 

2


(4.49) 

M 
dt

2
 
 Pm  Pmax sin



As said earlier, this equation is known as the swing equation. No closed form solution 

exists for swing equation except for the simple case Pm = 0 (not a practical case) which involves 

elliptical integrals. For small disturbance (say, gradual loading), the equation can be linearised 

leading to the concept of steady state stability where a unique criterion of stability pe       0

could be established. No generalized criteria are available for determining system stability with 

large disturbances (called transient stability). The practical approach to the transient stability 

problem is therefore to list all important severe disturbances along with their possible locations 



to which the system is likely to be subjected according to the experience and judgement of the 

power system analyst. Numerical solution of the swing equation (or equations for a multi- 

machine case) is then obtained in the presence of such disturbances giving a plot of  Vs t called 

the swing curve. If  starts to decrease after reaching a maximum value, it is normally assumed 

that the system is stable and the oscillation of  around the equilibrium point will decay and 

finally die out. As already pointed out in the introduction, important severe disturbances are a 

short circuit or a sudden loss of load. 

For ease of analysis certain assumptions and simplifications are always made (some of 

these have already been made in arriving at the swing equation (Eq. 4.49). All the assumptions 

are listed, below along with their justification and consequences upon accuracy of results. 

 
1. Transmission line as well as synchronous machine resistance is ignored. This leads to 

pessimistic result as resistance introduces damping term in the swing equation which helps 

stability. 

2. Damping term contributed by synchronous machine damper windings is ignored. This also 

leads to pessimistic results for the transient stability limit. 

3. Rotor speed is assumed to be synchronous. In fact it varies insignificantly during the course of 

the stability transient. 

4. Mechanical input to machine is assumed to remain constant during the transient, i.e., 

regulating action of the generator loop is ignored. This leads to pessimistic results. 

5. Voltage behind transient reactance is assumed to remain constant, i.e., action of voltage 

regulating loop is ignored. It also leads to pessimistic results. 

6. Shunt capacitances are not difficult to account for in a stability study. Where ignored, no 

greatly significant error is caused. 

7. Loads are modelled as constant admittances. This is a reasonably accurate representation. 

Note: Since rotor speed and hence frequency vary insignificantly, the network parameters remain 

fixed during a stability study. 

A digital computer programme to compute the transient following sudden disturbance 

can be suitably modified to include the effect of governor action and excitation control. 

Preset day power system are so large that even after lumping of machines (Eq.(24)), the 

system remains a multi-machine one. Even then, a simple two machine system greatly aids the 



understanding of the transient stability problem. It has been shown in that an equivalent single 

machine infinite bus system can be found for a two- machine system (Eq. 4.45) to (Eq. 4.49) 

Upon occurrence of a severe disturbance, say a short circuit, the power transfer between 

machines is greatly reduced, causing the machine torque angles to swing relatively. The circuit 

breakers near the fault disconnect the unhealthy part of the system so that power transfer can be 

partly restored, improving the chances of the system remain stable. The shorter the time to 

breaker operating, called clearing time, the higher is the probability of the system being stable. 

Most of the line faults are transient in nature and get cleared on opening the line. Therefore, it is 

common practice now to employ auto-reclose breakers which automatically close rapidly after 

each of the two sequential openings. If the fault still persists, the circuit breakers open and lock 

permanently till cleared manually. Since in the majority of faults the first reclosure will be 

successful, the chances of system stability are greatly enhanced by using autoreclose breakers. 

The procedure of determining the stability of a system upon occurrence of a disturbance 

followed by various switching off and switching on action called a stability study. Steps to be 

followed in stability study are outlined below for single- machine infinite bus bar system shown 

in fig. 6. The fault is assumed to be transient one which is cleared by the time of first reclosure. 

In the case of a permanent fault, this system completely falls apart. This will not be the case in a 

multi-machine system. The steps listed, in fact, apply to a system of any size. 

1. From prefault loading, determine the voltage behind transient reactance and the torque 

angle 0 of the machine with reference to the infinite bus. 

2. For the specified fault, determine the power transfer equation 

system Pe = 0 for a three-phase fault. 

Pe ( ) during fault. In this 

3. From the swing equation starting with 0 as obtained in step 1, calculate  as a function 

of time using a numerical technique of solving the nonlinear differential equation. 

4. After clearance of the fault, once again determine Pe ( ) and solve further for  (t) . In 

this case, Pe ( )  0 as when the fault is cleared, the system gets disconnected. 

5. After the transmission line is switched on, again find 

 (t) . 

Pe ( ) and continue to calculate 



6. If  (t) goes through a maximum value and starts to reduce, the system is regarded as 

stable. It is unstable if  (t) 

length of time. 

Equal Area Criteria for Stability 

continues to increase. Calculation is increased after a suitable 

In a system where one machine is swinging with respect to an infinite bus, it is possible 

to study transient stability by means of a simple criterion, without resorting to the numerical 

solution of a swing equation. 

Consider the equation 

d 
2

M 
dt

2
 

 

 Pm  Pe 

 

 Pa 

 

(4.50) 

 

Pa =accelerating power 

lf the system is unstable  continues to increase indefinitely with time and the machine 

loses synchronism. On the other hand, if the system is stable,  (t) performs oscillations 

(nonsinusoidal) whose amplitude decreases in actual practice because of damping terms (not 

included in the swing equation).These two situations are shown in fig. 6. Since the system is no- 

linear, the nature of its response1 [  (t) ] is not unique and it may exhibit instability in a fashion 

different from that indicated in Fig. 6, depending upon the nature and severity of disturbance. 

However, experience indicates that the response  (t) in a power system generally falls in the 

two broad categories as shown in the figure. It can easily be visualized now (this has also been 

stated earlier) that for a stables system, indication of stability will be given by observation of the 

first swing where  will go to a maximum and will start to reduce. 

Fig. 4.8 Plot of δ vs t for stable and unstable system. 



This fact can be stated as a stability criterion, that the system is stable if at some time 

d 
 0

 

dt 

 
(4.51) 

 

And is unstable, if 

d 
 0

 

dt 

 

 
 

(4.52) 

 

The stability criterion for power systems stated above can be converted into a simple and easily 

applicable form for a single machine infinite bus system. Multiplying both sides of the swing 

equation by 
 

2 
d  

, we get 
 



d d 
2


dt 

P d
2   2 

a
  

dt dt
2
 M dt 

Integrating, both sides we get 

 d 
2 

2  
dt 

  
M 



 Pa d

è ø d

or 

1 
 

 d  2 

  2

 

 

 

 
(4.53) 

   Pa d 
dt  M 

0 

 

 

 

Where 0 is the initial rotor angle and it begins to swing due to disturbances in the system. From 

Eqs. (4.53) and (4.54), the condition for stability can be written as 

1 
 2 

  2 
  Pa d   0 
 

0 

or 




(4.54) 

 Pa d  0 
0 

 







 

 



 

 
 

Fig.4.9 Pe- δ diagram for sudden increase in mechanical input 

The condition of stability can therefore be stated as: the system is stable if the area under Pa 

(accelerating power) -  curve reduces to zero at some value of . In other words, the positive 

(accelerating) area under Pa -  curve must equal the negative (decelerating) area and hence the 

name „equal area‟ criterion of stability. To illustrate the equal area criterion of stability, we now 

consider several types of disturbances that may occur in a single machine infinite bus bar system. 

Figure 4.9 shows the transient model of a single machine tied to infinite bus-bar. The electrical 

power transmitted is given by 

 

Pe 
d 

sin  Pmax sin

Under steady operating condition 

Pm0  Pe0  Pmax sin 0 

This is indicated by the point a in the Pe -  diagram of Fig. 4.8. 

Let the mechanical input to the rotor be suddenly increased to Pm1 (by opening the steam 
 

valve). The accelerating power Pa   Pm1  Pe 

 

causes the rotor speed to increase (  s ) 
 

and 

so does the rotor angle. At angle 1 , Pa  Pm1  Pe  Pmax sin1  0 (state point at b) but the rotor 

angle continues to increase as (  s ) .Pa now becomes negative (decelerating), the rotor speed 

E V 

 



begins to reduce but the angle continues to increase till at angle  2 , (  s ) once again (state 
 

point at c. At c), the-decelerating area A2 equals the accelerating area A1, (areas are shaded), i.e, 



 Pa d  0 
0 

Since the rotor is decelerating, the speed reduces below s and the rotor angle begins to 
 

reduce. The state point now traverses the Pe Vs curve in the opposite direction as indicated by 
 

arrows in Fig. 8.It is easily seen that the system oscillates about the new steady state point b 

(  1) with angle excursion up to  0 and  2 on the two sides. These oscillations are similar to 
 

the simple harmonic motion of an inertia-spring system except that these are not sinusoidal. 

As the oscillations decay out because of inherent system damping (not modelled), the 

system settles to the new steady state where 

Pm1  Pe  Pmax sin 1 

From Fig. 12.20, areas A1=A2 are given by 

 0 

A1   (Pm1  Pe )d
 0 

or 
 0 

A1   (Pe  Pm1)d
 0 

For the system to be stable, it should be possible to find angle  2 such that A1=A2. As Pm1 is 

increased, a limiting condition is finally reached when A1 equals the area above the Pm1 line as 

shown in Fig 4.10.Under this condition,  2 acquires the maximum value such that 

 2  


max    1    sin
1

 
Pm1 

Pmax 

 
(4.55) 

 

Any further increase in Pm1, means that the area available for A2 is less than A1, so that the excess 

kinetic energy causes  to increase beyond point c and the decelerating power changes over to 

accelerating power, with the system consequently becoming unstable. 



 

Fig. 4.10 Limiting case of transient stability with mechanical input suddenly increased 
 

It has thus been shown by use of the equal area criterion that there-is an upper limit to sudden 

increase in mechanical input ( Pm1  Pm0 ), for the system in question to remain stable' 

It may be noted from Fig. 9 that the system will remain stable even though the rotor may 

oscillate beyond   90
∘ 
, so long as the equal area criteria is met. The condition of    90∘ is 

meant for use in steady state stability only and does not apply to the transient stability case. 

 
 

Effect of Clearing Time on Stability 

Let the system of Fig. 4.9 be operating with mechanical input Pm at a steady angle of  

(Pm=Pe) as shown by the point a on the Pe Vs  diagram of Fig. 4.10. If a 3-phase fault occurs at 

the point P of the outgoing radial line, the electrical output of the generator instantly reduces to 

zero, i.e., Pe = 0 and the state point drops to b. The acceleration area A1 begins to increase and so 

does the rotor angle while the state point moves along bc. At time tc corresponding to angle c , 

the faulted line is cleared by the opening of the line circuit breaker. The values of tc and c are 
 

respectively known as clearing time and, clearing angle. The system once again becomes 

healthy and transmits Pe  Pmax sin  i.e. the state point shifts to d on the original Pe Vs  curve. 
 

The rotor now decelerates and the decelerating area A2, begins while the state point moves 

along de. If an angle 1 can be found such that A2=A1, the system is found to be stable. The 

system finally settles down to the steady operating point a in an oscillatory manner because of 

inherent damping. 



 

 
 

Fig. 4.10 Limiting case of transient stability with critical angle 
 

The value of clearing time corresponding to a clearing angle can be established only by 

numerical integration except in this simple case. The equal area criterion therefore gives only 

qualitative answer to system stability as the time when the breaker should be opened is hard to 

establish. 

As the clearing of the faulty line is delayed, A1 increases and so does 1 , to find A2=A1 

till 1  max as shown in Fig. 4.10. For a clearing time (or angle) larger than this value, the 

system would be unstable as A2<A. The maximum allowable value of the clearing time and angle 

for the system to remain stable are known respectively as critical clearing time and angle. 

For this simple case (Pe=0 during fault), explicit relationships for c 

(critical) are established below. All angles are in radians. 

(critical) and tc 

 

 

It is easily seen from Fig.4.10  
max 

and 

 
   0 

 

 
(4.56) 

Pm  Pmax sin0 
(4.57) 



Now 

A1  

and 
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 Pm ( cr 

 

  0 ) 

A2   (Pmax  sin  Pm )d
cr 

 Pmax (cos cr  cosm )  Pm ( max   cr ) 

For the system to be stable, A2=A1 which gives 

coscr 

  
Pm 

Pmax 

(max  0 )  cos




max 

 
 

(4.58) 

 

Where 

cr =critical clearing angle. 

Substituting Eq. (58) and (59) in Eq.(60), we get 

cr  cos1[(  2 )sin  cos ] 
 

(4.59) 

 

During the period the fault is persisting, the swing equation is 
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dt2 
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Pm ; 
where Pe  0 (4.60) 

 

Integrating twice 
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Where 

tcr =critical clearing time. 

cr =critical clearing angle 

 

 

 



From Eq. (4.61) 

 
cr   






(4.62) 

 

 

Wherecr , is given by the expression of Eq. (4.62) 

An explicit relationship for determining tcr is possible in this case as during the faulted 

condition Pe =0 and so the swing equation can be integrated in closed form. This will not be the 

case in most other situations. 

Consider now a single machine tied to infinite bus through two parallel lines as in Fig. 4.11a 

circuit model of the system is given in Fig. 4.11b. 

Let us study the transient stability of the system when one of the lines is suddenly 

switched off with the system operating at a steady road. Before switching off, power angle curve 

is given by 

PeI 


X d

E V 

 X1 X 2
sin  Pmax I sin

Immediately on switching off line 2, power angle curve is given by 
E V 

PeII 


X d  X1 X 2
sin  Pmax II sin







Fig. 4.11 Single machine tied to infinite bus through two parallel lines 

2H (cr  0 ) 

 . f .Pm 



 

 
 

Fig. 4.12 Equal area criterion applied to the opening of one of the two lines in parallel 
 

Both these curves are plotted in Fig. 4.12, wherein PmaxII < PmaxI as ( X d  X 1 )  ( X d  X 1 || X 2 ) 

.The system is operating initially with a steady power transfer Pe=Pm at a torque angle  0 on 
 

curve I. Immediately on switching off line 2, the electrical operating point shifts to curve II 

(point b). Accelerating energy corresponding to area A1 is put into rotor followed by decelerating 

energy for 1   0 . Assuming that an area A2 corresponding to decelerating energy (energy out of 

rotor) can be found such that A1 = A2, the system will be stable and will finally operate at c 

corresponding to a new, rotor angle  1   1 . This is so because a single line offers larger 

reactance and larger rotor angle is needed to transfer the same steady power. 

It is also easy to see that if the steady load is increased (line Pm is shifted upward in Fig. 4.12, a 

limit is finally reached beyond which decelerating area equal to A1 cannot be found and 

therefore, the system behaves as an unstable one, For the limiting case of stability, 1 

maximum value given by 

has 

1    max     c 

This is the same condition as in the previous example. 

We shall assume the fault to be a three-phase one. Before the occurrence of a fault, the power 

angle curve is given by 

E V 

PeI 


X d  X1 X 2
sin  Pmax I sin



This is plotted in fig. 16 

Upon occurrence of a three-phase fault at the generator end of line 2 (see Fig. 15a), the 

generator gets isolated from the power system for purposes of power flow as shown by Fig. 15b. 

Thus during the period the fault lasts, 

PeII=0 

 

The rotor therefore accelerates and angle  increases. Synchronism will be lost unless 

the fault is cleared in time. 

The circuit breakers at the two ends of the faulted line open at time tc (corresponding to 

angle  c ), the clearing time, disconnecting the faulted line. 

 
The power flow is now restored via the healthy line (through higher line 

reactance X2 in place of Xl || X2), with power angle curve 

 

 
PeII 

 
= 

X d

E V 

 X 1 X 2

 

sin  Pmax II 

 

sin







Fig. 4.13 Equal area criteria applied to the system, I system is normal, II fault applied, III faulted 

line isolated. 



Obviously, PmaxII < PmaxI. The rotor now starts to decelerate as shown in Fig. 4.13. The system 

will be stable if a decelerating area A2 can be found equal to accelerating area A1 before 

reaches the maximum allowable value  max .As area A1 depends upon clearing time tc 

(corresponding to clearing angle  c ), clearing time must be less than a certain value (critical 

clearing time) for the system to be stable. It is to be observed that the equal area criterion helps to 

determine critical clearing angle and not critical clearing time. Critical clearing time can be 

obtained by numerical solution of the swing equation 

It also easily follows that larger initial loading (Pm.) increases A1 for a given clearing angle (and 

time) and therefore quicker fault clearing would be needed to maintain stable operation. The 

power angle curve during fault is therefore given by 

 

PeII 


X II 
sin  Pmax II sin

PeI , PeIII and PeII as obtained above are all plotted in Fig.4.14. Accelerating area A1 

corresponding to a given clearing angle  is less in this case then in case a giving a better 

chance for stable operation. Stable system operation is shown in Fig. 4.14, wherein it is possible 

to find an area A2 equal to A1 for  2   max . As the clearing angle  c is increased, area A1 

increases and to find A2 = A1,  2 increases till it has a value  max , the maximum allowable for 

stability This case of critical clearing angle is shown in Fig. 4.15 

 

Fig. 4.14 Fault on middle of one line of the system with δ c< δcr 

E V 



 

Fig.4.15 Fault on middle of one line of the system of, case of critical clearing angle 
 

Applying equal area criterion to the case of critical clearing angle of Fig. 4.15 we can write 

cr 

 (Pm 

0 

where 

 

 Pmax II

 

sin )d

 max 

  (Pmax III 

cr 

 

sin  Pm )d


 max    sin 1  Pm 


P 

 
(4.63) 

 max III  



Integrating, we get 

P   P cos 
cr     (P cos  P  ) max      0 

m max II 

or 

0 
max III m cr 

Pm cr  0   Pmax II (coscr  cos0 )

 Pm  max 

or 

 cr   Pmax III (cos max  coscr )  0

coscr  
Pm max   0  Pmax II 

Pmax III 

cos0  Pmax III cosmax 

 Pmax II

 

(4.64) 

Critical clearing angle can be calculated from Eq. (4.64) above. The angles in the equation are in 

radians. The equation modifies as below if the angle are in degrees. 

 



 
cos

  

 180 
Pm 




max   0   Pmax II cos 0  Pmax III cos




max 

cr 

max III  Pmax II

If the circuit breakers of line 2 are reclosed successfully (i.e., the fault was a transient one and 

therefore vanished on clearing the faulty line), the power transfer once again becomes 

PeIV  PeI  Pmax I sin

Since reclosure restores power transfer, the chances of stable operation improve. A case 

of stable operation is indicated by Fig. 4.16. For critical clearing angle 

1  Pm 
1   max    sin  P 

 

cr 

 max I 

rc 

 

max 

 (Pm   Pmax II  sin )d
0 

   (Pmax III  sin
cr 

 Pm )d   (Pmax I  sin
rc 

 Pm )d








Fig. 4.16 fault in middle of a line of the system 
 

Point To Point Method of Improvement of Transient Stability 

 



In most practical systems, after machine lumping has been done, there are still more than 

two machines to be considered from the point of view of system stability. Therefore, there is no 

choice but to solve the swing equation of each machine by a numerical technique on the digital 

computer. Even in the case of a single machine tied to infinite bus bar, the critical clearing time 

cannot be obtained from equal area criterion and we have to make this calculation numerically 

through swing equation. There are several sophisticated methods now available for the solution 

of the swing equation including the powerful Runge-Kutta method. Here we shall treat the point- 

by-point method of solution which is a conventional, approximate method like all numerical 

methods but a well tried and proven one. We shall illustrate the point-by-point method for one 

machine tied to infinite bus bar. The procedure is, however, general and can be applied to every 

machine of a multi-machine system. Consider the swing equation 

d 
2

dt 
2
 
 

M 
(Pm  Pmaxsin )  Pa 

 

M 

M  
GH 




Or in p.u 

M  
H

 
f 

The solution  (t) is obtained at discrete intervals of time with interval spread of At uniform 

throughout. Accelerating power and change in speed which are continuous functions of time are 

discretized as below: 

1. The accelerating power Pa computed at the beginning of an interval is assumed to remain 

constant from the middle of the preceding interval to the middle of the interval being considered 

as shown in Fig. 4.17. 

2. The angular rotor velocity ω= dδ/dt (over and above synchronous velocity ωs) is assumed 

constant throughout any interval, at the value computed for the middle of the interval as shown 

in fig . 4.17 

 



 
 

 
 

 

Fig. 4.17 Point-by-point solution of swing equation 
 

In Fig.4.17, the numbering on t/∆t axis pertains to the end of intervals At the end of the (n-1)th 

interval, the acceleration power is 

Pa(n1)  Pm  Pmax sinn1 

 

(4.65) 

 

Where δn-1 has been previously calculated. The change in velocity (ω=dδ/dt), caused by the P(n- 

1), assumed constant over ∆t from (n-3/2) to (n-1/2) is 

n1/ 2 n3/ 2  (t / M )Pa(n1) (4.66) 



The change in δ during the (n-1)th interval is 

n  
n1 

 
n2  

 t
n3 / 2 

 

(4.67) 

 

And during the nth interval 

n 

 
 n 

 
 n1 

 
 tn1/ 2 

 

 
(4.68) 

 

Subtracting Eq. (4.67) from Eq. (4.68) and using Eq. (4.65), we get 

t2 

n  n1  
M

 Pa(n1) (4.69) 

 

Using this, we can write 

n 

 
 n1  n 

 

 
(4.70) 

 

The process of computation is now repeated to obtain Pa(n),∆δn+1.and δ n+1. The time solution in 

discrete form is thus carried out over the desired length of time, normally 0.5 s. Continuous form 

of solution is obtained by drawing a smooth curve through discrete values as shown in Fig. 4.17. 

Greater accuracy of solution can be achieved by reducing the time duration of intervals. 

The occurrence or removal of a fault or initiation of any switching event causes a 

discontinuity in accelerating power Pa. lf such a discontinuity occurs at the beginning of an 

interval, then the average of the values of Pa before and after the discontinuity must be used. 

Thus, in computing the increment of angle occurring during the first interval after a fault is 

applied at t = 0, Eq. (4.69) becomes 

1  
(t) 

2
 

M 
 Pa0

2 
 



Where (Pa0+) accelerating power after fault. Immediately before the fault the system is in 

steady state, so that P 
-
 = 0 and δ is a known value. If the fault is cleared at the beginning of the 

nth interval, in calculation for this interval one should use for Pa(n-1) the value ½[P 
_
 + P 

1)
+
], where Pa(n-1)

_
is the accelerating power immediately before clearing and Pa(n-1)

+
 is that 

immediately after clearing the fault. If the discontinuity occurs at the middle of an interval, no 

special procedure is needed. The increment of angle during such an interval is calculated, as 

usual, from the value of Pa at the beginning of the interval. 

a(n- 

a0 0 

a(n-1) 


